Κυριακή 6 Μαρτίου 2016

Inflammatory Signaling in Pancreatic Cancer

We aimed to investigate the mechanistic, functional, and therapeutic role of glycogen synthase kinase 3β (GSK-3β) in the regulation and activation of the proinflammatory oncogenic transcription factor nuclear factor of activated T cells (NFATc2) in pancreatic cancer. IHC, qPCR, immunoblotting, immunofluorescence microscopy, and proliferation assays were used to analyze mouse and human tissues and cell lines. Protein–protein interactions and promoter regulation were analyzed by coimmunoprecipitation, DNA pulldown, reporter, and ChIP assays. Preclinical assays were performed using a variety of pancreatic cancer cells lines, xenografts, and a genetically engineered mouse model (GEMM). GSK-3β–dependent SP2 phosphorylation mediates NFATc2 protein stability in the nucleus of pancreatic cancer cells stimulating pancreatic cancer growth. In addition to protein stabilization, GSK-3β also maintains NFATc2 activation through a distinct mechanism involving stabilization of NFATc2–STAT3 complexes independent of SP2 phosphorylation. For NFATc2–STAT3 complex formation, GSK-3β–mediated phosphorylation of STAT3 at Y705 is required to stimulate euchromatin formation of NFAT target promoters, such as cyclin-dependent kinase-6, which promotes tumor growth. Finally, preclinical experiments suggest that targeting the NFATc2–STAT3–GSK-3β module inhibits proliferation and tumor growth and interferes with inflammation-induced pancreatic cancer progression in KrasG12D mice. In conclusion, we describe a novel mechanism by which GSK-3β fine-tunes NFATc2 and STAT3 transcriptional networks to integrate upstream signaling events that govern pancreatic cancer progression and growth. Furthermore, the therapeutic potential of GSK-3β is demonstrated for the first time in a relevant Kras and inflammation-induced GEMM for pancreatic cancer. Mol Cancer Ther; 15(3); 491–502. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1YkVPvI
via IFTTT

Rapamycin Dosage

The mTOR pathway is a critical regulator of cell growth, proliferation, metabolism, and survival. Dysregulation of mTOR signaling has been observed in most cancers and, thus, the mTOR pathway has been extensively studied for therapeutic intervention. Rapamycin is a natural product that inhibits mTOR with high specificity. However, its efficacy varies by dose in several contexts. First, different doses of rapamycin are needed to suppress mTOR in different cell lines; second, different doses of rapamycin are needed to suppress the phosphorylation of different mTOR substrates; and third, there is a differential sensitivity of the two mTOR complexes mTORC1 and mTORC2 to rapamycin. Intriguingly, the enigmatic properties of rapamycin dosage can be explained in large part by the competition between rapamycin and phosphatidic acid (PA) for mTOR. Rapamycin and PA have opposite effects on mTOR whereby rapamycin destabilizes and PA stabilizes both mTOR complexes. In this review, we discuss the properties of rapamycin dosage in the context of anticancer therapeutics. Mol Cancer Ther; 15(3); 347–53. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1TD33w2
via IFTTT

HSP90 Inhibition Kills Mutant KRAS Colon Cancer Cells

Oncogenic mutations of KRAS pose a great challenge in the treatment of colorectal cancer. Here we report that mutant KRAS colon cancer cells are nevertheless more susceptible to apoptosis induced by the HSP90 inhibitor AUY922 than those carrying wild-type KRAS. Although AUY922 inhibited HSP90 activity with comparable potency in colon cancer cells irrespective of their KRAS mutational statuses, those with mutant KRAS were markedly more sensitive to AUY922-induced apoptosis. This was associated with upregulation of the BH3-only proteins Bim, Bik, and PUMA. However, only Bim appeared essential, in that knockdown of Bim abolished, whereas knockdown of Bik or PUMA only moderately attenuated apoptosis induced by AUY922. Mechanistic investigations revealed that endoplasmic reticulum (ER) stress was responsible for AUY922-induced upregulation of Bim, which was inhibited by a chemical chaperone or overexpression of GRP78. Conversely, siRNA knockdown of GRP78 or XBP-1 enhanced AUY922-induced apoptosis. Remarkably, AUY922 inhibited the growth of mutant KRAS colon cancer xenografts through activation of Bim that was similarly associated with ER stress. Taken together, these results suggest that AUY922 is a promising drug in the treatment of mutant KRAS colon cancers, and the agents that enhance the apoptosis-inducing potential of Bim may be useful to improve the therapeutic efficacy. Mol Cancer Ther; 15(3); 448–59. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1YkVQj9
via IFTTT

A Novel RAF Inhibitor with DFG-Out-Binding Mode

BI 882370 is a highly potent and selective RAF inhibitor that binds to the DFG-out (inactive) conformation of the BRAF kinase. The compound inhibited proliferation of human BRAF–mutant melanoma cells with 100x higher potency (1–10 nmol/L) than vemurafenib, whereas wild-type cells were not affected at 1,000 nmol/L. BI 882370 administered orally was efficacious in multiple mouse models of BRAF-mutant melanomas and colorectal carcinomas, and at 25 mg/kg twice daily showed superior efficacy compared with vemurafenib, dabrafenib, or trametinib (dosed to provide exposures reached in patients). To model drug resistance, A375 melanoma–bearing mice were initially treated with vemurafenib; all tumors responded with regression, but the majority subsequently resumed growth. Trametinib did not show any efficacy in this progressing population. BI 882370 induced tumor regression; however, resistance developed within 3 weeks. BI 882370 in combination with trametinib resulted in more pronounced regressions, and resistance was not observed during 5 weeks of second-line therapy. Importantly, mice treated with BI 882370 did not show any body weight loss or clinical signs of intolerability, and no pathologic changes were observed in several major organs investigated, including skin. Furthermore, a pilot study in rats (up to 60 mg/kg daily for 2 weeks) indicated lack of toxicity in terms of clinical chemistry, hematology, pathology, and toxicogenomics. Our results indicate the feasibility of developing novel compounds that provide an improved therapeutic window compared with first-generation BRAF inhibitors, resulting in more pronounced and long-lasting pathway suppression and thus improved efficacy. Mol Cancer Ther; 15(3); 354–65. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1TD33vX
via IFTTT

Selected Articles from This Issue



from Cancer via ola Kala on Inoreader http://ift.tt/1YkVQj1
via IFTTT

Preclinical Studies of SKLB646 against TNBC

Triple-negative breast cancer (TNBC) is the most aggressive and deadly breast cancer subtype. To date, chemotherapy is the only systemic therapy and prognosis remains poor. Herein, we report the preclinical evaluation of SKLB646 in the treatment of TNBC; SKLB646 is a novel multiple kinase inhibitor developed by us recently. This compound potently inhibited SRC and VEGFR2 with IC50 values of 0.002 μmol/L and 0.012 μmol/L, respectively. It also considerably inhibited B-Raf and C-Raf with IC50 values of 0.022 and 0.019 μmol/L, respectively. It exhibited significant antiproliferation and antiviability activities against TNBC cell lines. Studies of mechanism of action indicated that SKLB646 inhibited the activation of SRC signaling and blocked the MAPK signaling through inhibiting the Raf kinases. Interestingly, SKLB646 dose dependently downregulated the expression of Fra1, a transcriptional factor that plays a critical role in the epithelial-to-mesenchymal transition. In addition, SKLB646 could inhibit HUVEC proliferation, migration, and invasion. It effectively blocked the formation of intersegmental vessels in zebrafish embryos and displayed considerable antiangiogenic effects in the tumor-induced neovascularization zebrafish model. In TNBC xenograft models, SKLB646 suppressed the tumor growth in a dose-dependent manner. Moreover, SKLB646 could remarkably inhibit TNBC cell migration and invasion in vitro. Furthermore, in an experimental lung metastasis model, the overall survival time of groups treated with SKLB646 was much longer compared with the control-, dasatinib-, and paclitaxel-treated groups. In a preliminary pharmacokinetic study, SKLB646 showed good pharmacokinetic properties. Taken together, the preclinical data show that SKLB646 could be a promising lead compound for the treatment of TNBC. Mol Cancer Ther; 15(3); 366–78. ©2015 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1TD32s1
via IFTTT

HMGB1 Predicts Radiotherapy Response in Bladder Cancer

Although radical cystectomy surgery is the standard-of-care for muscle-invasive bladder cancer, it entails complete removal of the bladder and surrounding organs which leads to substantial loss in the quality-of-life of patients. Radiotherapy, which spares the bladder, would be a more appropriate treatment modality if we can utilize molecular markers to select patients with better response to radiation. In this study, we investigate a protein called high mobility group box protein 1 (HMGB1) as a predictive marker for radiotherapy response in bladder cancer. Our in vitro results indicate a positive correlation between higher levels of HMGB1 protein and resistance to radiation in various cell lines. Upon HMGB1 protein knockdown, highly significant (>1.5-fold) sensitization to radiotherapy was achieved. We saw that loss of HMGB1 was associated with at least two times higher (P < 0.001) DNA damage in cell lines postradiation. Our results also depicted that autophagy was inhibited more than 3-fold (P < 0.001) upon HMGB1 knockdown, implicating its role in autophagy as another cause of bladder cancer radioresistance. Further validation was done in vivo by conducting mouse tumor xenograft experiments, where HMGB1 knockdown tumors showed a significantly better (P < 0.001) response to radiotherapy and decreased autophagy (shown by P62 staining) as compared with controls. The cumulative findings of our in vitro and in vivo studies highlight the significance of HMGB1 as a radiation response marker as well as its utility in radiosensitization of bladder cancer. Mol Cancer Ther; 15(3); 471–9. ©2015 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1YkVOYu
via IFTTT

WIP1 Inhibitor GSK2830371 Potentiates Nutlin-3/RG7388 Sensitivity

Sensitivity to MDM2 inhibitors is widely different among responsive TP53 wild-type cell lines and tumors. Understanding the determinants of MDM2 inhibitor sensitivity is pertinent for their optimal clinical application. Wild-type p53-inducible phosphatase-1 (WIP1) encoded by PPM1D, is activated, gained/amplified in a range of TP53 wild-type malignancies, and is involved in p53 stress response homeostasis. We investigated cellular growth/proliferation of TP53 wild-type and matched mutant/null cell line pairs, differing in PPM1D genetic status, in response to Nutlin-3/RG7388 ± a highly selective WIP1 inhibitor, GSK2830371. We also assessed the effects of GSK2830371 on MDM2 inhibitor-induced p53Ser15 phosphorylation, p53-mediated global transcriptional activity, and apoptosis. The investigated cell line pairs were relatively insensitive to single-agent GSK2830371. However, a non–growth-inhibitory dose of GSK2830371 markedly potentiated the response to MDM2 inhibitors in TP53 wild-type cell lines, most notably in those harboring PPM1D-activating mutations or copy number gain (up to 5.8-fold decrease in GI50). Potentiation also correlated with significant increase in MDM2 inhibitor–induced cell death endpoints that were preceded by a marked increase in a WIP1 negatively regulated substrate, phosphorylated p53Ser15, known to increase p53 transcriptional activity. Microarray-based gene expression analysis showed that the combination treatment increases the subset of early RG7388-induced p53 transcriptional target genes. These findings demonstrate that potent and selective WIP1 inhibition potentiates the response to MDM2 inhibitors in TP53 wild-type cells, particularly those with PPM1D activation or gain, while highlighting the mechanistic importance of p53Ser15 and its potential use as a biomarker for response to this combination regimen. Mol Cancer Ther; 15(3); 379–91. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1TD30jU
via IFTTT

miR-137 Regulation of Sp1 Protein Translation

Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0–G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0–G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0–G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0–G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer. Mol Cancer Ther; 15(3); 512–22. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1YkVOrt
via IFTTT

CAR Agonist Improves CHOP-Based Chemotherapy

The constitutive androstane receptor (CAR and NR1i3) is a key regulator of CYP2B6, the enzyme predominantly responsible for the biotransformation of cyclophosphamide (CPA) to its pharmacologically active metabolite, 4-hydroxycyclophosphamide (4-OH-CPA). Previous studies from our laboratory illustrated that CAR activation increases the formation of 4-OH-CPA; however, CPA is rarely used clinically outside of combination therapies. Here, we hypothesize that including a selective human CAR activator with the CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) regimen can improve the efficacy without exacerbating off-target toxicity of this regimen in non-Hodgkin lymphoma treatment. In this study, we have developed a novel multiorgan coculture system containing human primary hepatocytes for hepatic metabolism, lymphoma cells as a model target for CHOP, and cardiomyocytes as a major site of off-target toxicity associated with this regimen. We found that a selective human CAR activator, CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime), altered expression of key drug-metabolizing enzymes and transporters in human hepatocytes, which positively affects the metabolic profile of CHOP. Coadministration of CITCO and CHOP in the coculture model led to significantly enhanced cytotoxicity in lymphoma cells but not in cardiomyocytes. Moreover, the beneficial effects of CITCO were abrogated when CAR knockout HepaRG cells were used in the coculture model. Importantly, synergistic anticancer effects were observed between CITCO and CHOP, in that inclusion of CITCO alongside the CHOP regimen offers comparable antineoplastic activity toward lymphoma cells at significantly reduced drug concentrations, and the decreased CHOP load attenuates cardiotoxicity. Overall, these findings provide a potentially promising novel strategy for facilitating CHOP-based chemotherapy. Mol Cancer Ther; 15(3); 392–401. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1TD31V5
via IFTTT

Anti-Mesothelin ADC in Pancreatic and Ovarian Cancer

DMOT4039A, a humanized anti-mesothelin mAb conjugated to the antimitotic agent monomethyl auristatin E (MMAE), was given to patients with pancreatic and ovarian cancer every 3 weeks (0.2–2.8 mg/kg; q3w) or weekly (0.8–1.2 mg/kg). A 3+3 design was used for dose escalation followed by expansion at the recommended phase II dose (RP2D) to evaluate safety and pharmacokinetics. Antitumor response was evaluated per RECIST 1.1 and serum CA19-9 or CA125 declines. Tumor mesothelin expression was determined by IHC. Seventy-one patients (40 pancreatic cancer; 31 ovarian cancer) were treated with DMOT4039A. For the q3w schedule (n = 54), the MTD and RP2D was 2.4 mg/kg, with dose-limiting toxicities of grade 3 hyperglycemia and grade 3 hypophosphatemia at 2.8 mg/kg. For the weekly schedule (n = 17), the maximum assessed dose was 1.2 mg/kg, with further dose escalations deferred because of toxicities limiting scheduled retreatment in later cycles, and therefore the RP2D level for the weekly regimen was determined to be 1 mg/kg. Across both schedules, the most common toxicities were gastrointestinal and constitutional. Treatment-related serious adverse events occurred in 6 patients; 4 patients continued treatment following dose reductions. Drug exposure as measured by antibody-conjugated MMAE and total antibody was generally dose proportional over all dose levels on both schedules. A total of 6 patients had confirmed partial responses (4 ovarian; 2 pancreatic) with DMOT4039A at 2.4 to 2.8 mg/kg i.v. q3w. DMOT4039A administered at doses up to 2.4 mg/kg q3w and 1.0 mg/kg weekly has a tolerable safety profile and antitumor activity in both pancreatic and ovarian cancer. Mol Cancer Ther; 15(3); 439–47. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1YkVMzY
via IFTTT

PIT with Viral HER2 Transduction for HER2-Negative Cancer

Peritoneal dissemination is the most frequent metastasis in gastric cancer and is associated with poor prognosis. The lack of particular target antigens in gastric cancer other than HER2 has hampered the development of treatments for peritoneal dissemination of gastric cancer. We hypothesized that HER2-extracellular domain (HER2-ECD) gene transduction combined with trastuzumab-based photoimmunotherapy (PIT) might provide excellent and selective antitumor effects for peritoneal dissemination of gastric cancer. In vitro, adenovirus/HER2-ECD (Ad/HER2-ECD) efficiently transduced HER2-ECD into HER2-negative gastric cancer cells. Trastuzumab-IR700 (Tra-IR700)–mediated PIT induced selective cell death of HER2-ECD–transduced tumor cells. Ad/HER2-ECD also induced homogenous expression of HER2 in heterogeneous gastric cancer cells, resulting in uniform sensitivity of the cells to Tra-IR700–mediated PIT. Anti-HER2 PIT integrated with adenoviral HER2-ECD gene transfer was applied in mice bearing peritoneal dissemination of HER2-negative gastric cancer. Intraperitoneal administration of Ad/HER2-ECD and Tra-IR700 with PIT inhibited peritoneal metastasis and prolonged the survival of mice bearing MKN45. Furthermore, minimal side effects allowed the integrated therapy to be used repeatedly, providing better control of peritoneal dissemination. In conclusion, the novel therapy of molecular-targeted PIT integrated with gene transfer technology is a promising approach for the treatment of peritoneal dissemination in gastric cancer. Mol Cancer Ther; 15(3); 402–11. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1TD31UT
via IFTTT

Prosurvival Role of T-Type Ca2+ Channels in Ovarian Cancer

Ovarian cancer is the deadliest gynecologic cancer, due in large part to the diagnosis of advanced stage disease, the development of platinum resistance, and inadequate treatment alternatives. Recent studies by our group and others have shown that T-type calcium (Ca2+) channels play a reinforcing role in cancer cell proliferation, cell-cycle progression, and apoptosis evasion. Therefore, we investigated whether T-type Ca2+ channels affect ovarian tumor growth and response to platinum agents. Inhibition of T-type Ca2+ channels with mibefradil or by silencing expression resulted in growth suppression in ovarian cancer cells with a simultaneous increase in apoptosis, which was accompanied by decreased expression of the antiapoptotic gene survivin (BIRC5). Analysis of intracellular signaling revealed mibefradil reduced AKT phosphorylation, increased the levels and nuclear retention of FOXO transcription factors that repress BIRC5 expression, and decreased the expression of FOXM1, which promotes BIRC5 expression. Combining carboplatin with mibefradil synergistically increased apoptosis in vitro. Importantly, mibefradil rendered platinum-resistant ovarian tumors sensitive to carboplatin in a mouse model of peritoneal metastasis. Together, the data provide rationale for future use of T-type channel antagonists together with platinum agents for the treatment of ovarian cancer. Mol Cancer Ther; 15(3); 460–70. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1YkVNUt
via IFTTT

Identifying a Novel MST4 Kinase Inhibitor

Pituitary tumors of the gonadotrope lineage are often large and invasive, resulting in hypopituitarism. No medical treatments are currently available. Using a combined genetic and genomic screen of individual human gonadotrope pituitary tumor samples, we recently identified the mammalian sterile-20 like kinase 4 (MST4) as a protumorigenic effector, driving increased pituitary cell proliferation and survival in response to a hypoxic microenvironment. To identify novel inhibitors of the MST4 kinase for potential future clinical use, computational-based virtual library screening was used to dock the SelleckChem kinase inhibitor library into the ATP-binding site of the MST4 crystal structure. Several inhibitor candidates were identified with the potential to bind with high affinity. Using a TR-FRET in vitro recombinant kinase assay, hesperadin, initially described as an Aurora kinase inhibitor, exhibited potent inhibition of the MST4 kinase at nanomolar concentrations. The LβT2 gonadotrope pituitary cell hypoxic model was used to test the ability of this inhibitor to antagonize MST4 actions. Under short-term severe hypoxia (1% O2), MST4 protection from hypoxia-induced apoptosis was abrogated in the presence of hesperadin. Similarly, under chronic hypoxia (5%), hesperadin blocked the proliferative and colony-forming actions of MST4 as well as the ability to activate specific downstream signaling and hypoxia-inducible factor-1 effectors. Together, these data identify hesperadin as the first potent, selective inhibitor of the MST4 kinase with the capacity to block pituitary tumor cell growth in a hypoxic microenvironment. Mol Cancer Ther; 15(3); 412–20. ©2015 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1TD31Ez
via IFTTT

T-DM1 Induces Hepatotoxicity

Ado-trastuzumab emtansine (T-DM1) is an antibody–drug conjugate (ADC) approved for the treatment of HER2-positive metastatic breast cancer. It consists of trastuzumab, a humanized mAb directed against HER2, and a microtubule inhibitor, DM1, conjugated to trastuzumab via a thioether linker. Hepatotoxicity is one of the serious adverse events associated with T-DM1 therapy. Mechanisms underlying T-DM1–induced hepatotoxicity remain elusive. Here, we use hepatocytes and mouse models to investigate the mechanisms of T-DM1–induced hepatotoxicity. We show that T-DM1 is internalized upon binding to cell surface HER2 and is colocalized with LAMP1, resulting in DM1-associated cytotoxicity, including disorganized microtubules, nuclear fragmentation/multiple nuclei, and cell growth inhibition. We further demonstrate that T-DM1 treatment significantly increases the serum levels of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase in mice and induces inflammation and necrosis in liver tissues, and that T-DM1–induced hepatotoxicity is dose dependent. Moreover, the gene expression of TNFα in liver tissues is significantly increased in mice treated with T-DM1 as compared with those treated with trastuzumab or vehicle. We propose that T-DM1–induced upregulation of TNFα enhances the liver injury that may be initially caused by DM1-mediated intracellular damage. Our proposal is underscored by the fact that T-DM1 induces the outer mitochondrial membrane rupture, a typical morphologic change in the mitochondrial-dependent apoptosis, and mitochondrial membrane potential dysfunction. Our work provides mechanistic insights into T-DM1–induced hepatotoxicity, which may yield novel strategies to manage liver injury induced by T-DM1 or other ADCs. Mol Cancer Ther; 15(3); 480–90. ©2015 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1YkVNDU
via IFTTT

Tigecycline Inhibits Glioma Growth

Tigecycline is a broad-spectrum, first-in-class glycylcycline antibiotic currently used to treat complicated skin infections and community-acquired pneumonia. However, there is accumulating evidence showing that tigecycline has anticancer properties. In this study, we found tigecycline could inhibit cell proliferation by inducing cell-cycle arrest, but not apoptosis in glioma. To find the underlying mechanism of how tigecycline inhibits cell proliferation, the expression of miRNAs, which were related to regulating cell-cycle progression, was detected with miRNA assay. We found that miR-199b-5p expression was significantly increased after tigecycline treatment, and miR-199b-5p target gene HES1 was downregulated. In addition, the PI3K/AKT pathway was inhibited and p21 expression was increased. When treated with tigecycline and miR-199b-5p antagomir simultaneously in glioma cells, we found that miR-199b-5p antagomir could partly block the effects induced by tigecycline. Tigecycline effectively upregulated miR-199b-5p expression and inhibited tumor growth in the xenograft tumor model of U87 glioma cells. These results suggest that tigecycline may induce cell-cycle arrest and inhibit glioma growth by regulating miRNA-199b-5p–HES1–AKT pathway. Thus, tigecycline is a promising agent in the treatment of malignant gliomas. Mol Cancer Ther; 15(3); 421–9. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1TkT5Pk
via IFTTT

TFAP2C Regulates Breast Cancer through EGFR

Expression of TFAP2C in luminal breast cancer is associated with reduced survival and hormone resistance, partially explained through regulation of RET. TFAP2C also regulates EGFR in HER2 breast cancer. We sought to elucidate the regulation and functional role of EGFR in luminal breast cancer. We used gene knockdown (KD) and treatment with a tyrosine kinase inhibitor (TKI) in cell lines and primary cancer isolates to determine the role of RET and EGFR in regulation of p-ERK and tumorigenesis. KD of TFAP2C decreased expression of EGFR in a panel of luminal breast cancers, and chromatin immunoprecipitation sequencing (ChIP-seq) confirmed that TFAP2C targets the EGFR gene. Stable KD of TFAP2C significantly decreased cell proliferation and tumor growth, mediated in part through EGFR. While KD of RET or EGFR reduced proliferation (31% and 34%, P < 0.01), combined KD reduced proliferation greater than either alone (52% reduction, P < 0.01). The effect of the TKI vandetanib on proliferation and tumor growth response of MCF-7 cells was dependent upon expression of TFAP2C, and dual KD of RET and EGFR eliminated the effects of vandetanib. The response of primary luminal breast cancers to TKIs assessed by ERK activation established a correlation with expression of RET and EGFR. We conclude that TFAP2C regulates EGFR in luminal breast cancer. Response to vandetanib was mediated through the TFAP2C target genes EGFR and RET. Vandetanib may provide a therapeutic effect in luminal breast cancer, and RET and EGFR can serve as molecular markers for response. Mol Cancer Ther; 15(3); 503–11. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1TD31o1
via IFTTT

Metformin Inhibits Urothelial Tumorigenesis

While pharmacoepidemiologic and laboratory studies have supported the hypothesis that the antidiabetic drug metformin may be useful in treating or preventing cancer, there is limited evidence to suggest which specific cancer sites may be particularly sensitive. Sensitivity likely is determined both by features of tumor pathophysiology and by pharmacokinetic factors. We used UPII-mutant Ha-ras transgenic mice that develop hyperplasia and low-grade, papillary urothelial cell carcinoma to determine whether metformin has activity in a model of superficial bladder cancer. Metformin significantly improved survival, reduced urinary tract obstruction, reduced bladder weight (a surrogate for tumor volume), and led to clear activation of AMP α kinase and inhibition of mTOR signaling in neoplastic tissue. We investigated the basis of the unusual sensitivity of this model to metformin, and observed that following oral dosing, urothelium is exposed to drug concentrations via the urine that are approximately 240-fold higher than those in the circulation. In addition, we observed that bladder cancer cell lines (RT4, UMUC-3, and J82) with homozygous deletion of either TSC1 or PTEN are more sensitive to metformin than those (TEU2, TCCSUP, and HT1376) with wild-type TSC1 and PTEN genes. Our findings provide a strong rationale for clinical trials of oral metformin in treatment of superficial bladder cancer. Mol Cancer Ther; 15(3); 430–8. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/1YkVKrQ
via IFTTT

A giant mucinous cystadenocarcinoma of the appendix: a case report and review of the literature

Abstract

Background

Mucinous cystadenocarcinoma is the second most common etiology of appendiceal mucocele. We report a relatively rare case of a giant appendiceal mucocele caused by mucinous cystadenocarcinoma, which occupied the entire abdomen of an adult woman.

Case presentation

A 63-year-old woman presented with a chief complaint of abdominal distention. Imaging studies showed a giant cystic mass occupying her entire abdomen. Laparotomy confirmed a giant appendiceal mucocele, and the patient underwent ileocecal resection. A mucinous deposit was not found in her abdominal cavity, and the ovaries were grossly normal bilaterally. The pathological diagnosis was mucinous adenocarcinoma with a low-grade mucinous neoplasm that invaded the subserosa. Regional lymph node metastasis was not found. She has had recurrence-free survival for 5 years.

Conclusions

The present case is the largest appendiceal cystadenocarcinoma ever reported. The optimal treatment of an appendiceal neoplasm requires further research based on consensus terminology of an appendiceal mucocele.



from Cancer via ola Kala on Inoreader http://ift.tt/1YiZo5i
via IFTTT

Thoracolumbar paravertebral giant ganglioneuroma and scoliosis: a case report and literature review

Abstract

Paravertebral ganglioneuroma and scoliosis is a rare clinical benign disease. The case we reported is about a 12-year-old girl who was hospitalized due to neoplasm with spinal deformity in the right abdomen for 1 month. Based on a careful preoperative evaluation and found no obvious surgery contraindications, the patient was treated with surgical resection of the tumor and correction of the deformity by surgery. Postoperative pathologic examination confirmed it was a ganglioneuroma. After the operation, the patient recovered well. Her spinal deformity was corrected, and she was 5 cm taller. Complete resection of ganglioneuroma following with a low recurrence rate and a good prognosis, patient does not need further chemotherapy, radiation therapy, or other treatments. All follow-up radiographic studies demonstrated no relapse of the tumor in the following 18 months. Combining this case with similar cases at home and aboard and reviewing related literature, we formed conclusions based on the manifestations, diagnosis, treatment, and prognosis of this disease and provided treatments for similar cases.



from Cancer via ola Kala on Inoreader http://ift.tt/1TBxgvA
via IFTTT

The value of serum RASSF10 hypermethylation as a diagnostic and prognostic tool for gastric cancer

Abstract

The tumor-suppressing role of Ras-association domain family 10 (RASSF10) has been described in several types of cancers. Here, we evaluated the potential use of the hypermethylation status of the RASSF10 promoter in serum as a new diagnostic and prognostic tool in gastric cancer (GC). We used bisulfite sequencing polymerase chain reaction to examine RASSF10 methylation levels in serum and/or tumor samples from 82 GC, 45 chronic atrophic gastritis (CAG), and 50 healthy control patients. In the serum of GC patients, the median level of RASSF10 methylation was higher at 47.84 % than those in the serum of CAG and healthy control patients at 11.89 and 11.35 %, respectively. The median level of RASSF10 methylation in GC tumor tissue was similarly high at 62.70 %. Furthermore, RASSF10 methylation levels were highly correlated between paired serum and tumor samples from GC patients. We performed receiver-operating characteristic curve analyses to verify that serum RASSF10 methylation levels could effectively distinguish GC from control patients. Moreover, multivariate analyses showed that high serum RASSF10 methylation levels in GC patients were associated with large tumors, lymph node metastasis, and high carcinoembryonic antigen (CEA) levels. Survival analyses showed that GC patients with high serum RASSF10 methylation levels had shorter overall and disease-free survival after D2 lymphadenectomy than those with low levels. High serum RASSF10 methylation levels were also an independent predictor of tumor recurrence and GC patient survival. In conclusion, serum RASSF10 promoter methylation levels can serve as a valuable indicator for the diagnosis and prognosis of GC in the clinic.



from Cancer via ola Kala on Inoreader http://ift.tt/1TjlzJn
via IFTTT

High expression of TRF2, SOX10, and CD10 in circulating tumor microemboli detected in metastatic melanoma patients. A potential impact for the assessment of disease aggressiveness

Abstract

Circulating tumors cells (CTCs) can be detected in the blood of metastatic melanoma patients (MMPs) both as isolated circulating tumor cells (iCTCs) and circulating tumor microemboli (CTMs), but their clinical significance remains unknown. The aim of this work was to evaluate the prognostic impact in metastatic cutaneous melanoma of CTMs and iCTCs identified by a cytomorphological approach using the isolation by size of tumor cell (ISET) method. We characterized the phenotype of CTCs using anti-PS100, anti-SOX10, anti-CD10, and anti-TRF2 antibodies. 128 MMPs and 37 control healthy individuals with benign nevi were included in this study. Results were compared to the follow-up of patients. 109/128 (85%) MMPs showed CTCs, 44/128 (34%) with 2 to 6 CTMs and 65/128 (51%) with 4 to 9 iCTCs. PS100 expression was homogeneous in iCTCs and heterogeneous in CTMs. SOX10, CD10, and TRF2 were mainly expressed in CTMs. None of the control subjects demonstrated circulating malignant tumor cells. Overall survival was significantly decreased in patients with CTMs, independently of the therapeutic strategies. In conclusion, the presence of CTMs is an independent predictor of shorter survival from the time of diagnosis of MMPs.

Thumbnail image of graphical abstract

We show that circulating tumor cells are frequently detected in blood of MMPs either isolated or as circulating tumor microemboli. The detection of circulating tumor microemboli (CTMs) is synonymous of a higher metastatic potential at baseline and after first line of treatment with Vemurafenib. Higher expression of TRF2, CD10, and SOX10 in CTMs correlated with worse prognosis in MMPs, whereas these molecules were only weakly or not expressed in isolated circulating tumor cells (CTCs).



from Cancer via ola Kala on Inoreader http://ift.tt/1U495Eb
via IFTTT