Παρασκευή 2 Σεπτεμβρίου 2016

Eco-Friendly Synthesis of Silver Nanoparticles Through Economical Methods and Assessment of Toxicity Through Oxidative Stress Analysis in the Labeo Rohita

Abstract

The physicochemical and biological properties of metals change as the particles are reduced to nanoscale. This ability increases the application of nanoparticles in commercial and medical industry. Keeping in view this importance, Silver nanoparticles (Ag-NPs) were synthesized by reduction methods using formaldehyde as reducing agent in the chemical route and lemon extracts in the biological route. The scanning electron microscope (SEM) images of nanoparticles suggested that the particles were either agglomerated or spherical in shape with mean diameter of 16.59 nm in the chemical route and 42.93 nm in the biological route. The particles were between 5 and 80 nm with maximum frequency between 5 and 20 nm in the chemical route and between 5 and 100 nm with maximum frequency between 15 and 50 nm in the biological method. In the second phase of the study, the effect of Ag-NPs on the oxidative stress was studied. For this purpose, Labeo rohita (20 ± 2.5 g in weight and 12 ± 1.4 cm in length) were involved. Six treatments were applied in three replicates having five fishes in each replicate. The first treatment was used as control group, and the other five treatments were exposed to either 10 or 20 or 30 or 45 or 55 mg L−1 of Ag-NPs for 28 days. The treatment of Ag-NPs caused oxidative stress in the liver and gill tissues, which induced alterations in the activities of antioxidant enzymes. The level of catalase (CAT) was decreased in response to Ag-NPs concentration in dose-dependent manner. Ag-NPs treatment stimulated the liver and gill tissues to significantly increase the level of superoxide dismutase (SOD), which might be due to synthesis of SOD and addition in the pre-existing SOD level. The level decreases again due to depletion of SOD level. There was a sharp decline in the activities of glutathione S-transferase (GST) in both gills and liver tissues even at lower concentration, and this decrease in the GST activity was significantly different at each treatment after 28 days of treatment except 20 mg L−1. The malondialdehyde (MDA) levels of gills and liver tissues were increased with the increase in the concentration. The elevated levels of glutathione (GSH) showed that the liver started defensive mechanism against the oxyradicals. This study finds out the cheap eco-friendly and economical method of Ag-NP synthesis. It is further revealed that Ag-NPs caused oxidative stress in the aquatic animals if exposure occurs at high concentrations.



from Cancer via ola Kala on Inoreader http://ift.tt/2bJtXBK
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου