Δευτέρα 18 Δεκεμβρίου 2017

Caspase cleavage of Mcl-1 impairs its anti-apoptotic activity and proteasomal degradation in non-small lung cancer cells

Abstract

Global cleavage of cellular proteins by activated caspases is a hallmark of apoptosis, which causes biochemical collapse of the cell. Recent studies suggest that, rather than completely destroying a protein, caspase cleavage can confer novel characteristics or functions. In this respect, the post-caspase role of Bcl-2 family proteins remains uncharacterized. Here, we showed that Mcl-1, a pro-survival member of the Bcl-2 family, was cleaved by caspase-3 in non-small cell lung cancer (NSCLC) cells undergoing chemotherapeutic agent-triggered apoptosis. Caspase cleavage partially impaired the anti-apoptotic activity of Mcl-1 by reducing its mitochondrial localization and impeding its association with the permeability transition pore-forming protein Bak. However, the stability of cleaved Mcl-1 was markedly enhanced because it was more refractory to ubiquitination-dependent proteasomal degradation, thereby improving cell viability to a greater extent than full-length Mcl-1 when transiently expressed in NSCLC cells. These findings shed new light on the role of Mcl-1 in apoptosis and suggest potential novel targets for optimizing the tumoricidal capacity of chemotherapy.



http://ift.tt/2kIroCV

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου