Am J Cancer Res. 2021 May 15;11(5):2025-2043. eCollection 2021.
ABSTRACT
Aerobic glycolysis (the Warburg effect) promotes tumor metastasis; hence, drugs targeting its regulators are being developed. c-Myc, a critical transcription factor that regulates the Warburg effect, is involved in the tumorigenesis of many cancers, including pancreatic cancer (PC). However, the upstream regulating mechanisms of c-Myc in PC are unclear. Herein, we reported that E3 ubiquitin ligase RING-finger protein 6 (RNF6) was upregulated in PC tissues, and an elevated RNF6 level was closely associated with metastasis and poor prognosis in patients with PC. In functional experiments, RNF6 over-expression accelerated the metastatic ability of PC cells, whereas RNF6 knockdown impaired PC cell motility and invasiveness along with metastasis in an orthotopic mouse model. Furthermore, we found that RNF6 promoted PC cell metastasis by enhancing c-Myc-mediated aerobic glycolysis. Mechanistically, RNF6 increased the expression level of c-Myc by catalyzing the ubiquitination of Max-dimerization protein-1 (MAD1), a cellular antagonist of c-Myc. Lastly, RNF6 promoted the degradation of MAD1 via the ubiquitin-proteasome pathway, and this reduction in the MAD1 levels enabled c-Myc to promote the Warburg effect in PC. Our results demonstrate that RNF6 may be a novel biomarker in PC carcinogenesis, thereby indicating that targeting the RNF6/MAD1/c-Myc axis is a potential strategy for PC therapy.
PMID:34094667 | PMC:PMC8167688
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου