Δευτέρα 13 Ιουνίου 2022

Dynamic Liver Magnetic Resonance Imaging During Free Breathing: A Feasibility Study With a Motion Compensated Variable Density Radial Acquisition and a Viewsharing High-Pass Filtering Reconstruction

alexandrossfakianakis shared this article with you from Inoreader
imageObjective Robust dynamic contrast-enhanced T1-weighted images are crucial for accurate detection and categorization of focal liver lesions in liver/abdominal magnetic resonance imaging (MRI). As optimal dynamic imaging usually requires multiple breath-holds, its inherent susceptibility to motion artifacts frequently results in degraded image quality in incompliant patients. Because free-breathing imaging may overcome this drawback, the intention of this study was to evaluate a dynamic MRI sequence acquired during free breathing using the variable density, elliptical centric golden angle radial stack-of-stars radial sampling scheme, which so far has not been implemented in 4-dimensional applications. Materials and Methods In a prospective pilot study, 27 patients received a routine abdominal MRI protocol including the prototype free-breathing sequence (4DFreeBreathing) for dynamic imaging. This enables more convenient and faster reconstruction through variable density, elliptical centric golden angle radial stack-of-stars without the use of additional reconstruction hardware, and even higher motion robustness through soft-gating. A standard breath-hold sequence performed subsequently served as reference standard. Of the continuous dynamic data sets, each dynamic phase was analyzed regarding image quality, motion artifacts and vessel conspicuity using 5-point Likert scales. Furthermore, correct timing of the late arterial phase was compared with the preexaminations. Results 4DFreeBreathing delivered motion-free dynamic images with high temporal resolution in each subject. Overall image quality scores were rated good or excellent for 4DFreeBreathing and the gold standard without significant differences (P = 0.34). There were significantly less motion artifacts in the 4DFreeBreathing sequence (P 0.99, P = 0.22, respectively). Correct timing of the late arterial phase could be achieved in 27 of 27 (100%) examinations using 4DFreeBreathing versus 35 of 53 (66%) preexaminations using gold standard (P
View on Web

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου