Δευτέρα 30 Οκτωβρίου 2017

Therapeutic potential of the metabolic modulator Metformin on osteosarcoma cancer stem-like cells

Abstract

Purpose

Osteosarcoma is the most common primary bone tumour appearing in children and adolescents. Recent studies demonstrate that osteosarcoma possesses a stem-like cell subset, so-called cancer stem-like cells, refractory to conventional chemotherapeutics and pointed out as responsible for relapses frequently observed in osteosarcoma patients. Here, we explored the therapeutic potential of Metformin on osteosarcoma stem-like cells, alone and as a chemosensitizer of doxorubicin.

Methods

Stem-like cells were isolated from human osteosarcoma cell lines, MNNG/HOS and MG-63, using the sphere-forming assay. Metformin cytotoxicity alone and combined with doxorubicin were evaluated using MTT/BrdU assays. Protein levels of AMPK and AKT were evaluated by Western Blot. Cellular metabolic status was assessed based on [18F]-FDG uptake and lactate production measurements. Sphere-forming efficiency and expression of pluripotency transcription factors analysed by qRT-PCR were tested as readout of Metformin effects on stemness features.

Results

Metformin induced a concentration-dependent decrease in the metabolic activity and proliferation of sphere-forming cells and improved doxorubicin-induced cytotoxicity. This drug also down-regulated the expression of master regulators of pluripotency (OCT4, SOX2, NANOG), and decreased spheres' self-renewal ability. Metformin effects on mitochondria led to the activation and phosphorylation of the energetic sensor AMPK along with an upregulation of the pro-survival AKT pathway in both cell populations. Furthermore, Metformin-induced mitochondrial stress increased [18F]-FDG uptake and lactate production in parental cells but not in the quiescent stem-like cells, suggesting the inability of the latter to cope with the energy crisis induced by metformin.

Conclusions

This preclinical study suggests that Metformin may be a potentially useful therapeutic agent and chemosensitizer of osteosarcoma stem-like cells to doxorubicin.



http://ift.tt/2hotcAl

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου