Preleukemic clones carrying BCR-ABLp190 oncogenic lesions are found in neonatal cord blood, where the majority of preleukemic carriers do not convert into precursor B-cell acute lymphoblastic leukemia (pB-ALL). However, the critical question of how these preleukemic cells transform into pB-ALL remains undefined. Here we model a BCR-ABLp190 preleukemic state and show that limiting BCR-ABLp190 expression to hematopoietic stem/progenitor cells (HS/PC) in mice (Sca1-BCR-ABLp190) causes pB-ALL at low penetrance, which resembles the human disease. pB-ALL blast cells were BCR-ABL-negative and transcriptionally similar to pro-B/pre-B cells, suggesting disease onset upon reduced Pax5 functionality. Consistent with this, double Sca1-BCR-ABLp190+Pax5+/- mice developed pB-ALL with shorter latencies, 90% incidence, and accumulation of genomic alterations in the remaining wild-type Pax5 allele. Mechanistically, the Pax5-deficient leukemic pro-B cells exhibited a metabolic switch towards increased glucose utilization and energy metabolism. Transcriptome analysis revealed that metabolic genes (IDH1, G6PC3, GAPDH, PGK1, MYC, ENO1, ACO1) were upregulated in Pax5-deficient leukemic cells, and a similar metabolic signature could be observed in human leukemia. Our studies unveil the first in vivo evidence that the combination between Sca1-BCR-ABLp190 and metabolic reprogramming imposed by reduced Pax5 expression is sufficient for pB-ALL development. These findings might help to prevent conversion of BCR-ABLp190 preleukemic cells.
http://ift.tt/2F4cik7
Τετάρτη 28 Φεβρουαρίου 2018
Loss of Pax5 exploits Sca1-BCR-ABLp190 susceptibility to confer the metabolic shift essential for pB-ALL
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου