The transcription factor Zeb1 has been identified as a crucial player in Kras-dependent oncogenesis. In pancreatic ductal adenocarcinoma (PDAC), Zeb1 is highly expressed in myofibroblasts and correlates with poor prognosis. As Kras mutations are key drivers in PDAC, we aimed here to assess the necessity of Zeb1 for Kras-driven PDAC and to define the role of Zeb1-expressing myofibroblasts in PDAC development. Genetically engineered mice with conditional pancreatic KrasG12D and Trp53 mutations (KPC) were crossed with Zeb1 haploinsufficient mice (Z+/-). Extensive PDAC was prominent in all 20-week old KPC;Z+/+ mice, whereas only low-grade precursor lesions were detected in age-matched KPC;Z+/- littermates, with PDAC developing eventually in KPC;Z+/- aged animals. Zeb1 expression in myofibroblasts occurred early in tumorigenesis and Zeb1 haploinsufficiency retarded native expansion of stromal myofibroblasts during precursor-to-cancer progression. Zeb1 downregulation in mPSC repressed their activated gene profile, impaired their migratory and proliferative activity, and attenuated their tumor-supporting features. Conditioned media from Z+/+ mouse-activated (myofibroblast-like) pancreatic stellate cells (mPSC) boosted Ras activity in pancreatic cancer cells carrying mutant Kras; this effect was not oberved when using conditioned media from Z+/- mPSC, revealing a paracrinal cooperative axis between Zeb1-expressing PSC and oncogenic Kras-bearing tumor cells. We conclude that Zeb1-expressing stromal myofibroblasts enable a heterotypic collaboration with the Kras-fated epithelial compartment, thus supporting pancreatic malignancy.
http://ift.tt/2F4c78r
Τετάρτη 28 Φεβρουαρίου 2018
Zeb1 in stromal myofibroblasts promotes Kras-driven development of pancreatic cancer
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου