ABSTRACT
Background and Aims
BCL2L10 is an apoptosis-related member of the BCL-2 protein family. The role of BCL2L10 in the pathogenesis of hepatocellular carcinoma (HCC) is poorly understood. This study was aimed to investigate the function and underlying mechanisms of BCL2L10 in HCC.
Methods
BCL2L10 expression in human HCC and corresponding adjacent normal tissues was investigated by quantitative real-time PCR and western blot. The biological functions of BCL2L10 in HCC cell lines were determined by cell viability, colony formation, cell apoptosis, cell cycle and cell metastasis assays, and in vivo by tumorigenicity and lung metastasis assays in nude mice. Human cancer pathway PCR array was employed to explore the genes regulated by BCL2L10 in HCC.
Results
BCL2L10 was down-regulated in human HCC tissues compared to their adjacent non-tumor tissues. Ectopic expression of BCL2L10 in HepG2 and Huh7 cells suppressed cell growth as evidenced by cell viability and colony formation assay, and induced cell apoptosis. HCC cells transfected with BCL2L10 revealed an increased cell proportion arrested at G2/M phase, concomitant with a reduction in the cell proportion in S-phase as compared with control cells. Additional, BCL2L10 repressed cell migration and angiogenesis. Over-expression of BCL2L10 also restrained the tumorigenecity and lung metastasis capacity in nude mice. The activation of JAK-STAT3 signaling was suppressed by BCL2L10 in HCC.
Conclusion
BCL2L10 was down-regulated in human HCC tissues compared to adjacent normal tissues. BCL2L10 suppressed HCC progression through inhibiting cell growth and metastasis. Thus, BCL2L10 functions as a tumor-suppressor in HCC. This article is protected by copyright. All rights reserved
from Cancer via ola Kala on Inoreader http://ift.tt/2ernU6T
via IFTTT