Πέμπτη 13 Απριλίου 2017

A First-in-Human Phase I Study of a Bivalent MET Antibody, Emibetuzumab (LY2875358), as Monotherapy and in Combination with Erlotinib in Advanced Cancer

Purpose: The MET/HGF pathway regulates cell proliferation and survival and is dysregulated in multiple tumors. Emibetuzumab (LY2875358) is a bivalent antibody that inhibits HGF-dependent and HGF-independent MET signaling. Here, we report dose escalation results from the first-in-human phase I trial of emibetuzumab.

Experimental Design: The study comprised a 3+3 dose escalation for emibetuzumab monotherapy (Part A) and in combination with erlotinib (Part A2). Emibetuzumab was administered i.v. every 2 weeks (Q2W) using a flat dosing scheme. The primary objective was to determine a recommended phase II dose (RPTD) range; secondary endpoints included tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and antitumor activity.

Results: Twenty-three patients with solid tumors received emibetuzumab monotherapy at 20, 70, 210, 700, 1,400, and 2,000 mg and 14 non–small cell lung cancer (NSCLC) patients at 700, 1,400, and 2,000 mg in combination with erlotinib 150 mg daily. No dose-limiting toxicities and related serious or ≥ grade 3 adverse events were observed. The most common emibetuzumab-related adverse events included mild diarrhea, nausea, and vomiting, and mild to moderate fatigue, anorexia, and hypocalcemia in combination with erlotinib. Emibetuzumab showed linear PK at doses >210 mg. Three durable partial responses were observed, one for emibetuzumab (700 mg) and two for emibetuzumab + erlotinib (700 mg and 2,000 mg). Both of the responders to emibetuzumab + erlotinib had progressed to prior erlotinib and were positive for MET protein tumor expression.

Conclusions: Based on tolerability, PK/PD analysis, and preliminary clinical activity, the RPTD range for emibetuzumab single agent and in combination with erlotinib is 700 to 2,000 mg i.v. Q2W. Clin Cancer Res; 23(8); 1910–9. ©2016 AACR.



http://ift.tt/2pdk1HZ

Assessment of Total Lesion Glycolysis by 18F FDG PET/CT Significantly Improves Prognostic Value of GEP and ISS in Myeloma

Purpose: Fluorine-18 fluorodeoxyglucose positron emission tomography with CT attenuation correction (18F-FDG PET/CT) is useful in the detection and enumeration of focal lesions and in semiquantitative characterization of metabolic activity (glycolytic phenotype) by calculation of glucose uptake. Total lesion glycolysis (TLG) and metabolic tumor volume (MTV) have the potential to improve the value of this approach and enhance the prognostic value of disease burden measures. This study aims to determine whether TLG and MTV are associated with progression-free survival (PFS) and overall survival (OS), and whether they improve risk assessments such as International Staging System (ISS) stage and GEP70 risk.

Experimental Design: 192 patients underwent whole body PET/CT in the Total Therapy 3A (TT3A) trial and were evaluated using three-dimensional region-of-interest analysis with TLG, MTV, and standard measurement parameters derived for all focal lesions with peak SUV above the background red marrow signal.

Results: In multivariate analysis, baseline TLG > 620 g and MTV > 210 cm3 remained a significant factor of poor PFS and OS after adjusting for baseline myeloma variables. Combined with the GEP70 risk score, TLG > 205 g identifies a high-risk–behaving subgroup with poor expected survival. In addition, TLG > 205 g accurately divides ISS stage II patients into two subgroups with similar outcomes to ISS stage I and ISS stage III, respectively.

Conclusions: TLG and MTV have significant survival implications at baseline and offer a more precise quantitation of the glycolytic phenotype of active disease. These measures can be assessed more readily than before using FDA-approved software and should be standardized and incorporated into clinical trials moving forward. Clin Cancer Res; 23(8); 1981–7. ©2016 AACR.



http://ift.tt/2pA0HBt

Significant Effect of Polymorphisms in CYP2D6 on Response to Tamoxifen Therapy for Breast Cancer: A Prospective Multicenter Study

Purpose: CYP2D6 is the key enzyme responsible for the generation of the potent active metabolite of tamoxifen, "endoxifen." There are still controversial reports questioning the association between CYP2D6 genotype and tamoxifen efficacy. Hence, we performed a prospective multicenter study to evaluate the clinical effect of CYP2D6 genotype on tamoxifen therapy.

Experimental Design: We enrolled 279 patients with hormone receptor–positive and human epidermal growth factor receptor 2-negative, invasive breast cancer receiving preoperative tamoxifen monotherapy for 14 to 28 days. Ki-67 response in breast cancer tissues after tamoxifen therapy was used as a surrogate marker for response to tamoxifen. We prospectively investigated the effects of allelic variants of CYP2D6 on Ki-67 response, pathological response, and hot flushes.

Results: Ki-67 labeling index in breast cancer tissues significantly decreased after preoperative tamoxifen monotherapy (P = 0.0000000000000013). Moreover, proportion and Allred scores of estrogen receptor–positive cells in breast cancer tissues were significantly associated with Ki-67 response (P = 0.0076 and 0.0023, respectively). Although CYP2D6 variants were not associated with pathologic response nor hot flushes, they showed significant association with Ki-67 response after preoperative tamoxifen therapy (P = 0.018; between two groups, one with at least one wild-type allele and the other without a wild-type allele).

Conclusions: This is the first prospective study evaluating the relationship between CYP2D6 variants and Ki-67 response after tamoxifen therapy. Our results suggest that genetic variation in CYP2D6 is a key predictor for the response to tamoxifen in patients with breast cancer. Clin Cancer Res; 23(8); 2019–26. ©2016 AACR.



http://ift.tt/2pzPHnu

A Novel Compound ARN-3236 Inhibits Salt-Inducible Kinase 2 and Sensitizes Ovarian Cancer Cell Lines and Xenografts to Paclitaxel

Purpose: Salt-inducible kinase 2 (SIK2) is a centrosome kinase required for mitotic spindle formation and a potential target for ovarian cancer therapy. Here, we examine the effects of a novel small-molecule SIK2 inhibitor, ARN-3236, on sensitivity to paclitaxel in ovarian cancer.

Experimental Design: SIK2 expression was determined in ovarian cancer tissue samples and cell lines. ARN-3236 was tested for its efficiency to inhibit growth and enhance paclitaxel sensitivity in cultures and xenografts of ovarian cancer cell lines. SIK2 siRNA and ARN-3236 were compared for their ability to produce nuclear–centrosome dissociation, inhibit centrosome splitting, block mitotic progression, induce tetraploidy, trigger apoptotic cell death, and reduce AKT/survivin signaling.

Results: SIK2 is overexpressed in approximately 30% of high-grade serous ovarian cancers. ARN-3236 inhibited the growth of 10 ovarian cancer cell lines at an IC50 of 0.8 to 2.6 μmol/L, where the IC50 of ARN-3236 was inversely correlated with endogenous SIK2 expression (Pearson r = –0.642, P = 0.03). ARN-3236 enhanced sensitivity to paclitaxel in 8 of 10 cell lines, as well as in SKOv3ip (P = 0.028) and OVCAR8 xenografts. In at least three cell lines, a synergistic interaction was observed. ARN-3236 uncoupled the centrosome from the nucleus in interphase, blocked centrosome separation in mitosis, caused prometaphase arrest, and induced apoptotic cell death and tetraploidy. ARN-3236 also inhibited AKT phosphorylation and attenuated survivin expression.

Conclusions: ARN-3236 is the first orally available inhibitor of SIK2 to be evaluated against ovarian cancer in preclinical models and shows promise in inhibiting ovarian cancer growth and enhancing paclitaxel chemosensitivity. Clin Cancer Res; 23(8); 1945–54. ©2016 AACR.



http://ift.tt/2pAcxey

A Potent In Vivo Antitumor Efficacy of Novel Recombinant Type I Interferon

Purpose: Antiproliferative, antiviral, and immunomodulatory activities of endogenous type I IFNs (IFN1) prompt the design of recombinant IFN1 for therapeutic purposes. However, most of the designed IFNs exhibited suboptimal therapeutic efficacies against solid tumors. Here, we report evaluation of the in vitro and in vivo antitumorigenic activities of a novel recombinant IFN termed sIFN-I.

Experimental Design: We compared primary and tertiary structures of sIFN-I with its parental human IFNα-2b, as well as affinities of these ligands for IFN1 receptor chains and pharmacokinetics. These IFN1 species were also compared for their ability to induce JAK–STAT signaling and expression of the IFN1-stimulated genes and to elicit antitumorigenic effects. Effects of sIFN-I on tumor angiogenesis and immune infiltration were also tested in transplanted and genetically engineered immunocompetent mouse models.

Results: sIFN-I displayed greater affinity for IFNAR1 (over IFNAR2) chain of the IFN1 receptor and elicited a greater extent of IFN1 signaling and expression of IFN-inducible genes in human cells. Unlike IFNα-2b, sIFN-I induced JAK–STAT signaling in mouse cells and exhibited an extended half-life in mice. Treatment with sIFN-I inhibited intratumoral angiogenesis, increased CD8+ T-cell infiltration, and robustly suppressed growth of transplantable and genetically engineered tumors in immunodeficient and immunocompetent mice.

Conclusions: These findings define sIFN-I as a novel recombinant IFN1 with potent preclinical antitumorigenic effects against solid tumor, thereby prompting the assessment of sIFN-I clinical efficacy in humans. Clin Cancer Res; 23(8); 2038–49. ©2016 AACR.



http://ift.tt/2nLliGp

Randomized, Placebo-Controlled, Phase II Study of Veliparib in Combination with Carboplatin and Paclitaxel for Advanced/Metastatic Non-Small Cell Lung Cancer

Purpose: PARP plays an important role in DNA repair. Veliparib, a PARP inhibitor, enhances the efficacy of platinum compounds and has been safely combined with carboplatin and paclitaxel. The primary endpoint of this phase II trial determined whether addition of veliparib to carboplatin and paclitaxel improved progression-free survival (PFS) in previously untreated patients with advanced/metastatic non–small cell lung cancer.

Experimental Design: Patients were randomized 2:1 to carboplatin and paclitaxel with either veliparib or placebo. Veliparib (120 mg) or placebo was given on days 1 to 7 of each 3-week cycle, with carboplatin (AUC = 6 mg/mL/min) and paclitaxel (200 mg/m2) administered on day 3, for a maximum of 6 cycles.

Results: Overall, 158 were included (median age, 63 years; male 68%, squamous histology 48%). Median PFS was 5.8 months in the veliparib group versus 4.2 months in the placebo group [HR, 0.72; 95% confidence interval (CI), 0.45–1.15; P = 0.17)]. Median overall survival (OS) was 11.7 and 9.1 months in the veliparib and placebo groups, respectively (HR, 0.80; 95% CI, 0.54–1.18; P = 0.27). In patients with squamous histology, median PFS (HR, 0.54; 95% CI, 0.26–1.12; P = 0.098) and OS (HR, 0.73; 95% CI, 0.43–1.24; P = 0.24) favored veliparib treatment. Objective response rate was similar between groups (veliparib: 32.4%; placebo: 32.1%), but duration of response favored veliparib treatment (HR, 0.47; 95% CI, 0.16–1.42; P = 0.18). Grade III/IV neutropenia, thrombocytopenia, and anemia were comparable between groups.

Conclusions: Veliparib combination with carboplatin and paclitaxel was well-tolerated and demonstrated a favorable trend in PFS and OS versus chemotherapy alone. Patients with squamous histology had the best outcomes with veliparib combination. Clin Cancer Res; 23(8); 1937–44. ©2016 AACR.



http://ift.tt/2pAczmG

A Phase II, Randomized, Open-Label Study of Neoadjuvant Degarelix versus LHRH Agonist in Prostate Cancer Patients Prior to Radical Prostatectomy

Purpose: Degarelix, a new gonadotropin-releasing hormone (GnRH) receptor antagonist with demonstrated efficacy as first-line treatment in the management of high-risk prostate cancer, possesses some theoretical advantages over luteinizing hormone–releasing hormone (LHRH) analogues in terms of avoiding "testosterone flare" and lower follicle-stimulating hormone (FSH) levels. We set out to determine whether preoperative degarelix influenced surrogates of disease control in a randomized phase II study.

Experimental Design: Thirty-nine patients were randomly assigned to one of three different neoadjuvant arms: degarelix only, degarelix/bicalutamide, or LHRH agonist/bicalutamide. Treatments were given for 3 months before prostatectomy. Patients had localized prostate cancer and had chosen radical prostatectomy as primary treatment. The primary end point was treatment effect on intratumoral dihydrotestosterone levels.

Results: Intratumoral DHT levels were higher in the degarelix arm than both the degarelix/bicalutamide and LHRH agonist/bicalutamide arms (0.87 ng/g vs. 0.26 ng/g and 0.23 ng/g, P < 0.01). No significant differences existed for other intratumoral androgens, such as testosterone and dehydroepiandrosterone. Patients in the degarelix-only arm had higher AMACR levels on immunohistochemical analysis (P = 0.01). Serum FSH levels were lower after 12 weeks of therapy in both degarelix arms than the LHRH agonist/bicalutamide arm (0.55 and 0.65 vs. 3.65, P < 0.01), and inhibin B levels were lower in the degarelix/bicalutamide arm than the LHRH agonist/bicalutamide arm (82.14 vs. 126.67, P = 0.02).

Conclusions: Neoadjuvant degarelix alone, compared with use of LHRH agonist and bicalutamide, is associated with higher levels of intratumoral dihydrotestosterone, despite similar testosterone levels. Further studies that evaluate the mechanisms behind these results are needed. Clin Cancer Res; 23(8); 1974–80. ©2016 AACR.



http://ift.tt/2pcXj2U

Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1

Purpose: While immune checkpoint inhibitors are disrupting the management of patients with cancer, anecdotal occurrences of rapid progression (i.e., hyperprogressive disease or HPD) under these agents have been described, suggesting potentially deleterious effects of these drugs. The prevalence, the natural history, and the predictive factors of HPD in patients with cancer treated by anti-PD-1/PD-L1 remain unknown.

Experimental Design: Medical records from all patients (N = 218) prospectively treated in Gustave Roussy by anti-PD-1/PD-L1 within phase I clinical trials were analyzed. The tumor growth rate (TGR) prior ("REFERENCE"; REF) and upon ("EXPERIMENTAL"; EXP) anti-PD-1/PD-L1 therapy was compared to identify patients with accelerated tumor growth. Associations between TGR, clinicopathologic characteristics, and overall survival (OS) were computed.

Results: HPD was defined as a RECIST progression at the first evaluation and as a ≥2-fold increase of the TGR between the REF and the EXP periods. Of 131 evaluable patients, 12 patients (9%) were considered as having HPD. HPD was not associated with higher tumor burden at baseline, nor with any specific tumor type. At progression, patients with HPD had a lower rate of new lesions than patients with disease progression without HPD (P < 0.05). HPD is associated with a higher age (P < 0.05) and a worse outcome (overall survival). Interestingly, REF TGR (before treatment) was inversely correlated with response to anti-PD-1/PD-L1 (P < 0.05) therapy.

Conclusions: A novel aggressive pattern of hyperprogression exists in a fraction of patients treated with anti-PD-1/PD-L1. This observation raises some concerns about treating elderly patients (>65 years old) with anti-PD-1/PD-L1 monotherapy and suggests further study of this phenomenon. Clin Cancer Res; 23(8); 1920–8. ©2016 AACR.

See related commentary by Sharon, p. 1879



http://ift.tt/2pd72X3

Integrative Development of a TLR8 Agonist for Ovarian Cancer Chemoimmunotherapy

Purpose: Immunotherapy is an emerging paradigm for the treatment of cancer, but the potential efficacy of many drugs cannot be sufficiently tested in the mouse. We sought to develop a rational combination of motolimod—a novel Toll-like receptor 8 (TLR8) agonist that stimulates robust innate immune responses in humans but diminished responses in mice—with pegylated liposomal doxorubicin (PLD), a chemotherapeutic that induces immunogenic cell death.

Experimental Design: We followed an integrative pharmacologic approach including healthy human volunteers, non-human primates, NSG-HIS ("humanized immune system") mice reconstituted with human CD34+ cells, and patients with cancer to test the effects of motolimod and to assess the combination of motolimod with PLD for the treatment of ovarian cancer.

Results: The pharmacodynamic effects of motolimod monotherapy in NSG-HIS mice closely mimicked those in non-human primates and healthy human subjects, whereas the effects of the motolimod/PLD combination in tumor-bearing NSG-HIS mice closely mimicked those in patients with ovarian cancer treated in a phase Ib trial (NCT01294293). The NSG-HIS mouse helped elucidate the mechanism of action of the combination and revealed a positive interaction between the two drugs in vivo. The combination produced no dose-limiting toxicities in patients with ovarian cancer. Two subjects (15%) had complete responses and 7 subjects (53%) had disease stabilization. A phase II study was consequently initiated.

Conclusions: These results are the first to demonstrate the value of pharmacologic approaches integrating the NSG-HIS mouse, non-human primates, and patients with cancer for the development of novel immunomodulatory anticancer agents with human specificity. Clin Cancer Res; 23(8); 1955–66. ©2016 AACR.



http://ift.tt/2pzPJvC

Long-term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination

Purpose: Patients with glioblastoma have less than 15-month median survival despite surgical resection, high-dose radiation, and chemotherapy with temozolomide. We previously demonstrated that targeting cytomegalovirus pp65 using dendritic cells (DC) can extend survival and, in a separate study, that dose-intensified temozolomide (DI-TMZ) and adjuvant granulocyte macrophage colony-stimulating factor (GM-CSF) potentiate tumor-specific immune responses in patients with glioblastoma. Here, we evaluated pp65-specific cellular responses following DI-TMZ with pp65-DCs and determined the effects on long-term progression-free survival (PFS) and overall survival (OS).

Experimental Design: Following standard-of-care, 11 patients with newly diagnosed glioblastoma received DI-TMZ (100 mg/m2/d x 21 days per cycle) with at least three vaccines of pp65 lysosome–associated membrane glycoprotein mRNA-pulsed DCs admixed with GM-CSF on day 23 ± 1 of each cycle. Thereafter, monthly DI-TMZ cycles and pp65-DCs were continued if patients had not progressed.

Results: Following DI-TMZ cycle 1 and three doses of pp65-DCs, pp65 cellular responses significantly increased. After DI-TMZ, both the proportion and proliferation of regulatory T cells (Tregs) increased and remained elevated with serial DI-TMZ cycles. Median PFS and OS were 25.3 months [95% confidence interval (CI), 11.0–] and 41.1 months (95% CI, 21.6–), exceeding survival using recursive partitioning analysis and matched historical controls. Four patients remained progression-free at 59 to 64 months from diagnosis. No known prognostic factors [age, Karnofsky performance status (KPS), IDH-1/2 mutation, and MGMT promoter methylation] predicted more favorable outcomes for the patients in this cohort.

Conclusions: Despite increased Treg proportions following DI-TMZ, patients receiving pp65-DCs showed long-term PFS and OS, confirming prior studies targeting cytomegalovirus in glioblastoma. Clin Cancer Res; 23(8); 1898–909. ©2017 AACR.



http://ift.tt/2pdhAFA

Atezolizumab: A PD-L1-Blocking Antibody for Bladder Cancer

Atezolizumab (Tecentriq, MPDL3280A; Genentech/Roche) is an FcR binding–deficient, fully humanized IgG1 mAb designed to interfere with the binding of PD-L1 ligand to its two receptors, PD-1 and B7.1. By blocking the PD-L1/PD-1 immune checkpoint, atezolizumab reduces immunosuppressive signals found within the tumor microenvironment and, consequently, increases T-cell–mediated immunity against the tumor. Atezolizumab has been FDA approved as second-line therapy for advanced bladder cancer. This accelerated approval was based on phase II trial data in patients with metastatic bladder cancer that showed unexpected and durable tumor responses. In subjects whose tumors progressed on first-line platinum-based chemotherapy, the objective response rate was 15%, the complete response rate was 5%, and 1-year overall survival was 36%. In subjects that were chemotherapy naïve and cisplatin ineligible, the objective response rate was 24%, the complete response rate was 7%, and 1-year overall survival was 57%. Better responses were associated with higher PD-L1 expression on the tumor-infiltrating leukocytes. These data suggest that patients with advanced bladder cancer treated with atezolizumab have significantly better response rates and survival than historical controls treated with other second-line regimens. The toxicity profile of atezolizumab is also favorable. Trials are currently assessing whether atezolizumab is effective in earlier bladder cancer stages and in the first-line metastatic setting. Clin Cancer Res; 23(8); 1886–90. ©2016 AACR.



http://ift.tt/2pcUMWw

Cytidine Deaminase Deficiency Reveals New Therapeutic Opportunities against Cancer

Purpose: One of the main challenges in cancer therapy is the identification of molecular mechanisms mediating resistance or sensitivity to treatment. Cytidine deaminase (CDA) was reported to be downregulated in cells derived from patients with Bloom syndrome, a genetic disease associated with a strong predisposition to a wide range of cancers. The purpose of this study was to determine whether CDA deficiency could be associated with tumors from the general population and could constitute a predictive marker of susceptibility to antitumor drugs.

Experimental Design: We analyzed CDA expression in silico, in large datasets for cancer cell lines and tumors and in various cancer cell lines and primary tumor tissues using IHC, PDXs, qRT-PCR, and Western blotting. We also studied the mechanism underlying CDA silencing and searched for molecules that might target specifically CDA-deficient tumor cells using in silico analysis coupled to classical cellular experimental approaches.

Results: We found that CDA expression is downregulated in about 60% of cancer cells and tissues. We demonstrate that DNA methylation is a prevalent mechanism of CDA silencing in tumors. Finally, we show that CDA-deficient tumor cells can be specifically targeted with epigenetic treatments and with the anticancer drug aminoflavone.

Conclusions: CDA expression status identifies new subgroups of cancers, and CDA deficiency appears to be a novel and relevant predictive marker of susceptibility to antitumor drugs, opening up new possibilities for treating cancer. Clin Cancer Res; 23(8); 2116–26. ©2016 AACR.



http://ift.tt/2pzSc9o

Molecular Pathways: Revisiting Glycogen Synthase Kinase-3{beta} as a Target for the Treatment of Cancer

Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, is a complex regulator of numerous cellular functions. GSK-3β is a unique kinase which is constitutively active in resting and nonstimulated cells. GSK-3β has been implicated in a wide range of diseases including neurodegeneration, inflammation and fibrosis, noninsulin-dependent diabetes mellitus, and cancer. It is a regulator of NF-B–mediated survival of cancer cells, which provided a rationale for the development of GSK-3 inhibitors targeting malignant tumors. Recent studies, many of them reported over the past decade, have identified GSK-3β as a potential therapeutic target in more than 15 different types of cancer. Whereas only active GSK-3β is expressed in cancer cell nucleus, aberrant nuclear accumulation of GSK-3β has been identified as a hallmark of cancer cells in malignant tumors of different origin. This review focuses on the preclinical and clinical development of GSK-3 inhibitors and the potential therapeutic impact of targeting GSK-3β in human cancer. Clin Cancer Res; 23(8); 1891–7. ©2017 AACR.



http://ift.tt/2pd328C

Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody

Purpose: Urelumab is an agonist antibody to CD137 with potential application as an immuno-oncology therapeutic. Data were analyzed to assess safety, tolerability, and pharmacodynamic activity of urelumab, including the dose selected for ongoing development in patients with advanced solid tumors and lymphoma.

Experimental Design: A total of 346 patients with advanced cancers who had progressed after standard treatment received at least one dose of urelumab in one of three dose–escalation, monotherapy studies. Urelumab was administered at doses ranging from 0.1 to 15 mg/kg. Safety analyses included treatment-related and serious adverse events (AEs), as well as treatment-related AEs leading to discontinuation and death, with a focus on liver function test abnormalities and hepatic AEs.

Results: Urelumab doses between 1 and 15 mg/kg given every 3 weeks resulted in a higher frequency of treatment-related AEs than 0.1 or 0.3 mg/kg every 3 weeks. Dose was the single most important factor contributing to transaminitis development, which was more frequent and severe at doses ≥1 mg/kg. At the MTD of 0.1 mg/kg every 3 weeks, urelumab was relatively well tolerated, with fatigue (16%) and nausea (13%) being the most common treatment-related AEs, and was associated with immunologic and pharmacodynamic activity demonstrated by the induction of IFN-inducible genes and cytokines.

Conclusions: Integrated evaluation of urelumab safety data showed significant transaminitis was strongly associated with doses of ≥1 mg/kg. However, urelumab 0.1 mg/kg every 3 weeks was demonstrated to be safe, with pharmacodynamic activity supporting continued clinical evaluation of this dose as monotherapy and in combination with other immuno-oncology agents. Clin Cancer Res; 23(8); 1929–36. ©2016 AACR.



http://ift.tt/2pA6EOI

The Added Value of Circulating Tumor Cell Enumeration to Standard Markers in Assessing Prognosis in a Metastatic Castration-Resistant Prostate Cancer Population

Purpose: Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease for which better prognostic models for survival are needed. We examined the added value of circulating tumor cell (CTC) enumeration relative to common prognostic laboratory measures from patients with CRPC.

Methods: Utility of CTC enumeration as a baseline and postbaseline prognostic biomarker was examined using data from two prospective randomized registration-directed trials (COU-AA-301 and ELM-PC4) within statistical models used to estimate risk for survival. Discrimination and calibration were used to measure model predictive accuracy and the added value for CTC enumeration in the context of a Cox model containing albumin, lactate dehydrogenase (LDH), PSA, hemoglobin, and alkaline phosphatase (ALK). Discrimination quantifies how accurately a risk model predicts short-term versus long-term survivors. Calibration measures the closeness of actual survival time to the predicted survival time.

Results: Adding CTC enumeration to a model containing albumin, LDH, PSA, hemoglobin, and ALK ("ALPHA") improved its discriminatory power. The weighted c-index for ALPHA without CTCs was 0.72 (SE, 0.02) versus 0.75 (SE, 0.02) for ALPHA + CTCs. The increase in discrimination was restricted to the lower-risk cohort. In terms of calibration, adding CTCs produced a more accurate model-based prediction of patient survival. The absolute prediction error for ALPHA was 3.95 months (SE, 0.28) versus 3.75 months (SE, 0.22) for ALPHA + CTCs.

Conclusions: Addition of CTC enumeration to standard measures provides more accurate assessment of patient risk in terms of baseline and postbaseline prognosis in the mCRPC population. Clin Cancer Res; 23(8); 1967–73. ©2016 AACR.



http://ift.tt/2pzRVDg

Correction: Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1-Mediated Lipogenesis



http://ift.tt/2pcZeEo

A Four-Gene Promoter Methylation Marker Panel Consisting of GREM1, NEURL, LAD1, and NEFH Predicts Survival of Clear Cell Renal Cell Cancer Patients

Purpose: The currently used prognostic models for patients with nonmetastatic clear cell renal cell carcinoma (ccRCC) are based on clinicopathologic features and might be improved by adding molecular markers. Epigenetic alterations occur frequently in ccRCC and are promising biomarkers. The aim of this study is to identify prognostic promoter methylation markers for ccRCC.

Experimental Design: We integrated data generated by massive parallel sequencing of methyl-binding domain enriched DNA and microarray-based RNA expression profiling of 5-aza-2'-deoxycytidine–treated ccRCC cell lines to comprehensively characterize the ccRCC methylome. A selection of the identified methylation markers was evaluated in two independent series of primary ccRCC (n = 150 and n = 185) by methylation-specific PCR. Kaplan–Meier curves and log-rank tests were used to estimate cause-specific survival. HRs and corresponding 95% confidence intervals (CI) were assessed using Cox proportional hazard models. To assess the predictive capacity and fit of models combining several methylation markers, HarrellC statistic and the Akaike Information Criterion were used.

Results: We identified four methylation markers, that is, GREM1, NEURL, LAD1, and NEFH, that individually predicted prognosis of patients with ccRCC. The four markers combined were associated with poorer survival in two independent patient series (HR, 3.64; 95% CI, 1.02–13.00 and HR, 7.54; 95% CI, 2.68–21.19). These findings were confirmed in a third series of ccRCC cases from The Cancer Genome Atlas (HR, 3.60; 95% CI, 2.02–6.40).

Conclusions: A four-gene promoter methylation marker panel consisting of GREM1, NEURL, LAD1, and NEFH predicts outcome of patients with ccRCC and might be used to improve current prognostic models. Clin Cancer Res; 23(8); 2006–18. ©2016 AACR.



http://ift.tt/2pA5Xox

RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients

Purpose: Aberrations in genetic sequences encoding the tyrosine kinase receptor RET lead to oncogenic signaling that is targetable with anti-RET multikinase inhibitors. Understanding the comprehensive genomic landscape of RET aberrations across multiple cancers may facilitate clinical trial development targeting RET.

Experimental Design: We interrogated the molecular portfolio of 4,871 patients with diverse malignancies for the presence of RET aberrations using Clinical Laboratory Improvement Amendments–certified targeted next-generation sequencing of 182 or 236 gene panels.

Results: Among diverse cancers, RET aberrations were identified in 88 cases [1.8% (88/4, 871)], with mutations being the most common alteration [38.6% (34/88)], followed by fusions [30.7% (27/88), including a novel SQSTM1-RET] and amplifications [25% (22/88)]. Most patients had coexisting aberrations in addition to RET anomalies [81.8% (72/88)], with the most common being in TP53-associated genes [59.1% (52/88)], cell cycle–associated genes [39.8% (35/88)], the PI3K signaling pathway [30.7% (27/88)], MAPK effectors [22.7% (20/88)], or other tyrosine kinase families [21.6% (19/88)]. RET fusions were mutually exclusive with MAPK signaling pathway alterations. All 72 patients harboring coaberrations had distinct genomic portfolios, and most [98.6% (71/72)] had potentially targetable coaberrations with either an FDA-approved or an investigational agent. Two cases with lung (KIF5B-RET) and medullary thyroid carcinoma (RET M918T) that responded to a vandetanib (multikinase RET inhibitor)-containing regimen are shown.

Conclusions: RET aberrations were seen in 1.8% of diverse cancers, with most cases harboring actionable, albeit distinct, coexisting alterations. The current report suggests that optimal targeting of patients with RET anomalies will require customized combination strategies. Clin Cancer Res; 23(8); 1988–97. ©2016 AACR.



http://ift.tt/2pddBZl

The MAPK Pathway Regulates Intrinsic Resistance to BET Inhibitors in Colorectal Cancer

Purpose: The bromodomain and extra-terminal domain (BET) family proteins are epigenetic readers for acetylated histone marks. Emerging BET bromodomain inhibitors have exhibited antineoplastic activities in a wide range of human cancers through suppression of oncogenic transcription factors, including MYC. However, the preclinical activities of BET inhibitors in advanced solid cancers are moderate at best. To improve BET-targeted therapy, we interrogated mechanisms mediating resistance to BET inhibitors in colorectal cancer.

Experimental Design: Using a panel of molecularly defined colorectal cancer cell lines, we examined the impact of BET inhibition on cellular proliferation and survival as well as MYC activity. We further tested the ability of inhibitors targeting the RAF/MEK/ERK (MAPK) pathway to enhance MYC suppression and circumvent intrinsic resistance to BET inhibitors. Key findings were validated using genetic approaches.

Results: BET inhibitors as monotherapy moderately reduced colorectal cancer cell proliferation and MYC expression. Blockade of the MAPK pathway synergistically sensitized colorectal cancer cells to BET inhibitors, leading to potent apoptosis and MYC downregulation in vitro and in vivo. A combination of JQ1 and trametinib, but neither agent alone, induced significant regression of subcutaneous colorectal cancer xenografts.

Conclusions: Our findings suggest that the MAPK pathway confers intrinsic resistance to BET inhibitors in colorectal cancer and propose an effective combination strategy for the treatment of colorectal cancer. Clin Cancer Res; 23(8); 2027–37. ©2016 AACR.



http://ift.tt/2pzXlyp

Early Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma and Sputum

Purpose: CT screening can reduce death from lung cancer. We sought to improve the diagnostic accuracy of lung cancer screening using ultrasensitive methods and a lung cancer–specific gene panel to detect DNA methylation in sputum and plasma.

Experimental Design: This is a case–control study of subjects with suspicious nodules on CT imaging. Plasma and sputum were obtained preoperatively. Cases (n = 150) had pathologic confirmation of node-negative (stages I and IIA) non–small cell lung cancer. Controls (n = 60) had non-cancer diagnoses. We detected promoter methylation using quantitative methylation-specific real-time PCR and methylation-on-beads for cancer-specific genes (SOX17, TAC1, HOXA7, CDO1, HOXA9, and ZFP42).

Results: DNA methylation was detected in plasma and sputum more frequently in people with cancer compared with controls (P < 0.001) for five of six genes. The sensitivity and specificity for lung cancer diagnosis using the best individual genes was 63% to 86% and 75% to 92% in sputum, respectively, and 65% to 76% and 74% to 84% in plasma, respectively. A three-gene combination of the best individual genes has sensitivity and specificity of 98% and 71% using sputum and 93% and 62% using plasma. Area under the receiver operating curve for this panel was 0.89 [95% confidence interval (CI), 0.80–0.98] in sputum and 0.77 (95% CI, 0.68–0.86) in plasma. Independent blinded random forest prediction models combining gene methylation with clinical information correctly predicted lung cancer in 91% of subjects using sputum detection and 85% of subjects using plasma detection.

Conclusions: High diagnostic accuracy for early-stage lung cancer can be obtained using methylated promoter detection in sputum or plasma. Clin Cancer Res; 23(8); 1998–2005. ©2016 AACR.



http://ift.tt/2pdcVmY

The Added Value of Circulating Tumor Cell Enumeration to Standard Markers in Assessing Prognosis in a Metastatic Castration-Resistant Prostate Cancer Population

Purpose: Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease for which better prognostic models for survival are needed. We examined the added value of circulating tumor cell (CTC) enumeration relative to common prognostic laboratory measures from patients with CRPC.

Methods: Utility of CTC enumeration as a baseline and postbaseline prognostic biomarker was examined using data from two prospective randomized registration-directed trials (COU-AA-301 and ELM-PC4) within statistical models used to estimate risk for survival. Discrimination and calibration were used to measure model predictive accuracy and the added value for CTC enumeration in the context of a Cox model containing albumin, lactate dehydrogenase (LDH), PSA, hemoglobin, and alkaline phosphatase (ALK). Discrimination quantifies how accurately a risk model predicts short-term versus long-term survivors. Calibration measures the closeness of actual survival time to the predicted survival time.

Results: Adding CTC enumeration to a model containing albumin, LDH, PSA, hemoglobin, and ALK ("ALPHA") improved its discriminatory power. The weighted c-index for ALPHA without CTCs was 0.72 (SE, 0.02) versus 0.75 (SE, 0.02) for ALPHA + CTCs. The increase in discrimination was restricted to the lower-risk cohort. In terms of calibration, adding CTCs produced a more accurate model-based prediction of patient survival. The absolute prediction error for ALPHA was 3.95 months (SE, 0.28) versus 3.75 months (SE, 0.22) for ALPHA + CTCs.

Conclusions: Addition of CTC enumeration to standard measures provides more accurate assessment of patient risk in terms of baseline and postbaseline prognosis in the mCRPC population. Clin Cancer Res; 23(8); 1967–73. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pzRVDg
via IFTTT

Significant Effect of Polymorphisms in CYP2D6 on Response to Tamoxifen Therapy for Breast Cancer: A Prospective Multicenter Study

Purpose: CYP2D6 is the key enzyme responsible for the generation of the potent active metabolite of tamoxifen, "endoxifen." There are still controversial reports questioning the association between CYP2D6 genotype and tamoxifen efficacy. Hence, we performed a prospective multicenter study to evaluate the clinical effect of CYP2D6 genotype on tamoxifen therapy.

Experimental Design: We enrolled 279 patients with hormone receptor–positive and human epidermal growth factor receptor 2-negative, invasive breast cancer receiving preoperative tamoxifen monotherapy for 14 to 28 days. Ki-67 response in breast cancer tissues after tamoxifen therapy was used as a surrogate marker for response to tamoxifen. We prospectively investigated the effects of allelic variants of CYP2D6 on Ki-67 response, pathological response, and hot flushes.

Results: Ki-67 labeling index in breast cancer tissues significantly decreased after preoperative tamoxifen monotherapy (P = 0.0000000000000013). Moreover, proportion and Allred scores of estrogen receptor–positive cells in breast cancer tissues were significantly associated with Ki-67 response (P = 0.0076 and 0.0023, respectively). Although CYP2D6 variants were not associated with pathologic response nor hot flushes, they showed significant association with Ki-67 response after preoperative tamoxifen therapy (P = 0.018; between two groups, one with at least one wild-type allele and the other without a wild-type allele).

Conclusions: This is the first prospective study evaluating the relationship between CYP2D6 variants and Ki-67 response after tamoxifen therapy. Our results suggest that genetic variation in CYP2D6 is a key predictor for the response to tamoxifen in patients with breast cancer. Clin Cancer Res; 23(8); 2019–26. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pzPHnu
via IFTTT

A Four-Gene Promoter Methylation Marker Panel Consisting of GREM1, NEURL, LAD1, and NEFH Predicts Survival of Clear Cell Renal Cell Cancer Patients

Purpose: The currently used prognostic models for patients with nonmetastatic clear cell renal cell carcinoma (ccRCC) are based on clinicopathologic features and might be improved by adding molecular markers. Epigenetic alterations occur frequently in ccRCC and are promising biomarkers. The aim of this study is to identify prognostic promoter methylation markers for ccRCC.

Experimental Design: We integrated data generated by massive parallel sequencing of methyl-binding domain enriched DNA and microarray-based RNA expression profiling of 5-aza-2'-deoxycytidine–treated ccRCC cell lines to comprehensively characterize the ccRCC methylome. A selection of the identified methylation markers was evaluated in two independent series of primary ccRCC (n = 150 and n = 185) by methylation-specific PCR. Kaplan–Meier curves and log-rank tests were used to estimate cause-specific survival. HRs and corresponding 95% confidence intervals (CI) were assessed using Cox proportional hazard models. To assess the predictive capacity and fit of models combining several methylation markers, HarrellC statistic and the Akaike Information Criterion were used.

Results: We identified four methylation markers, that is, GREM1, NEURL, LAD1, and NEFH, that individually predicted prognosis of patients with ccRCC. The four markers combined were associated with poorer survival in two independent patient series (HR, 3.64; 95% CI, 1.02–13.00 and HR, 7.54; 95% CI, 2.68–21.19). These findings were confirmed in a third series of ccRCC cases from The Cancer Genome Atlas (HR, 3.60; 95% CI, 2.02–6.40).

Conclusions: A four-gene promoter methylation marker panel consisting of GREM1, NEURL, LAD1, and NEFH predicts outcome of patients with ccRCC and might be used to improve current prognostic models. Clin Cancer Res; 23(8); 2006–18. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pA5Xox
via IFTTT

Results from an Integrated Safety Analysis of Urelumab, an Agonist Anti-CD137 Monoclonal Antibody

Purpose: Urelumab is an agonist antibody to CD137 with potential application as an immuno-oncology therapeutic. Data were analyzed to assess safety, tolerability, and pharmacodynamic activity of urelumab, including the dose selected for ongoing development in patients with advanced solid tumors and lymphoma.

Experimental Design: A total of 346 patients with advanced cancers who had progressed after standard treatment received at least one dose of urelumab in one of three dose–escalation, monotherapy studies. Urelumab was administered at doses ranging from 0.1 to 15 mg/kg. Safety analyses included treatment-related and serious adverse events (AEs), as well as treatment-related AEs leading to discontinuation and death, with a focus on liver function test abnormalities and hepatic AEs.

Results: Urelumab doses between 1 and 15 mg/kg given every 3 weeks resulted in a higher frequency of treatment-related AEs than 0.1 or 0.3 mg/kg every 3 weeks. Dose was the single most important factor contributing to transaminitis development, which was more frequent and severe at doses ≥1 mg/kg. At the MTD of 0.1 mg/kg every 3 weeks, urelumab was relatively well tolerated, with fatigue (16%) and nausea (13%) being the most common treatment-related AEs, and was associated with immunologic and pharmacodynamic activity demonstrated by the induction of IFN-inducible genes and cytokines.

Conclusions: Integrated evaluation of urelumab safety data showed significant transaminitis was strongly associated with doses of ≥1 mg/kg. However, urelumab 0.1 mg/kg every 3 weeks was demonstrated to be safe, with pharmacodynamic activity supporting continued clinical evaluation of this dose as monotherapy and in combination with other immuno-oncology agents. Clin Cancer Res; 23(8); 1929–36. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pA6EOI
via IFTTT

RET Aberrations in Diverse Cancers: Next-Generation Sequencing of 4,871 Patients

Purpose: Aberrations in genetic sequences encoding the tyrosine kinase receptor RET lead to oncogenic signaling that is targetable with anti-RET multikinase inhibitors. Understanding the comprehensive genomic landscape of RET aberrations across multiple cancers may facilitate clinical trial development targeting RET.

Experimental Design: We interrogated the molecular portfolio of 4,871 patients with diverse malignancies for the presence of RET aberrations using Clinical Laboratory Improvement Amendments–certified targeted next-generation sequencing of 182 or 236 gene panels.

Results: Among diverse cancers, RET aberrations were identified in 88 cases [1.8% (88/4, 871)], with mutations being the most common alteration [38.6% (34/88)], followed by fusions [30.7% (27/88), including a novel SQSTM1-RET] and amplifications [25% (22/88)]. Most patients had coexisting aberrations in addition to RET anomalies [81.8% (72/88)], with the most common being in TP53-associated genes [59.1% (52/88)], cell cycle–associated genes [39.8% (35/88)], the PI3K signaling pathway [30.7% (27/88)], MAPK effectors [22.7% (20/88)], or other tyrosine kinase families [21.6% (19/88)]. RET fusions were mutually exclusive with MAPK signaling pathway alterations. All 72 patients harboring coaberrations had distinct genomic portfolios, and most [98.6% (71/72)] had potentially targetable coaberrations with either an FDA-approved or an investigational agent. Two cases with lung (KIF5B-RET) and medullary thyroid carcinoma (RET M918T) that responded to a vandetanib (multikinase RET inhibitor)-containing regimen are shown.

Conclusions: RET aberrations were seen in 1.8% of diverse cancers, with most cases harboring actionable, albeit distinct, coexisting alterations. The current report suggests that optimal targeting of patients with RET anomalies will require customized combination strategies. Clin Cancer Res; 23(8); 1988–97. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pddBZl
via IFTTT

Assessment of Total Lesion Glycolysis by 18F FDG PET/CT Significantly Improves Prognostic Value of GEP and ISS in Myeloma

Purpose: Fluorine-18 fluorodeoxyglucose positron emission tomography with CT attenuation correction (18F-FDG PET/CT) is useful in the detection and enumeration of focal lesions and in semiquantitative characterization of metabolic activity (glycolytic phenotype) by calculation of glucose uptake. Total lesion glycolysis (TLG) and metabolic tumor volume (MTV) have the potential to improve the value of this approach and enhance the prognostic value of disease burden measures. This study aims to determine whether TLG and MTV are associated with progression-free survival (PFS) and overall survival (OS), and whether they improve risk assessments such as International Staging System (ISS) stage and GEP70 risk.

Experimental Design: 192 patients underwent whole body PET/CT in the Total Therapy 3A (TT3A) trial and were evaluated using three-dimensional region-of-interest analysis with TLG, MTV, and standard measurement parameters derived for all focal lesions with peak SUV above the background red marrow signal.

Results: In multivariate analysis, baseline TLG > 620 g and MTV > 210 cm3 remained a significant factor of poor PFS and OS after adjusting for baseline myeloma variables. Combined with the GEP70 risk score, TLG > 205 g identifies a high-risk–behaving subgroup with poor expected survival. In addition, TLG > 205 g accurately divides ISS stage II patients into two subgroups with similar outcomes to ISS stage I and ISS stage III, respectively.

Conclusions: TLG and MTV have significant survival implications at baseline and offer a more precise quantitation of the glycolytic phenotype of active disease. These measures can be assessed more readily than before using FDA-approved software and should be standardized and incorporated into clinical trials moving forward. Clin Cancer Res; 23(8); 1981–7. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pA0HBt
via IFTTT

Integrative Development of a TLR8 Agonist for Ovarian Cancer Chemoimmunotherapy

Purpose: Immunotherapy is an emerging paradigm for the treatment of cancer, but the potential efficacy of many drugs cannot be sufficiently tested in the mouse. We sought to develop a rational combination of motolimod—a novel Toll-like receptor 8 (TLR8) agonist that stimulates robust innate immune responses in humans but diminished responses in mice—with pegylated liposomal doxorubicin (PLD), a chemotherapeutic that induces immunogenic cell death.

Experimental Design: We followed an integrative pharmacologic approach including healthy human volunteers, non-human primates, NSG-HIS ("humanized immune system") mice reconstituted with human CD34+ cells, and patients with cancer to test the effects of motolimod and to assess the combination of motolimod with PLD for the treatment of ovarian cancer.

Results: The pharmacodynamic effects of motolimod monotherapy in NSG-HIS mice closely mimicked those in non-human primates and healthy human subjects, whereas the effects of the motolimod/PLD combination in tumor-bearing NSG-HIS mice closely mimicked those in patients with ovarian cancer treated in a phase Ib trial (NCT01294293). The NSG-HIS mouse helped elucidate the mechanism of action of the combination and revealed a positive interaction between the two drugs in vivo. The combination produced no dose-limiting toxicities in patients with ovarian cancer. Two subjects (15%) had complete responses and 7 subjects (53%) had disease stabilization. A phase II study was consequently initiated.

Conclusions: These results are the first to demonstrate the value of pharmacologic approaches integrating the NSG-HIS mouse, non-human primates, and patients with cancer for the development of novel immunomodulatory anticancer agents with human specificity. Clin Cancer Res; 23(8); 1955–66. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pzPJvC
via IFTTT

Early Detection of Lung Cancer Using DNA Promoter Hypermethylation in Plasma and Sputum

Purpose: CT screening can reduce death from lung cancer. We sought to improve the diagnostic accuracy of lung cancer screening using ultrasensitive methods and a lung cancer–specific gene panel to detect DNA methylation in sputum and plasma.

Experimental Design: This is a case–control study of subjects with suspicious nodules on CT imaging. Plasma and sputum were obtained preoperatively. Cases (n = 150) had pathologic confirmation of node-negative (stages I and IIA) non–small cell lung cancer. Controls (n = 60) had non-cancer diagnoses. We detected promoter methylation using quantitative methylation-specific real-time PCR and methylation-on-beads for cancer-specific genes (SOX17, TAC1, HOXA7, CDO1, HOXA9, and ZFP42).

Results: DNA methylation was detected in plasma and sputum more frequently in people with cancer compared with controls (P < 0.001) for five of six genes. The sensitivity and specificity for lung cancer diagnosis using the best individual genes was 63% to 86% and 75% to 92% in sputum, respectively, and 65% to 76% and 74% to 84% in plasma, respectively. A three-gene combination of the best individual genes has sensitivity and specificity of 98% and 71% using sputum and 93% and 62% using plasma. Area under the receiver operating curve for this panel was 0.89 [95% confidence interval (CI), 0.80–0.98] in sputum and 0.77 (95% CI, 0.68–0.86) in plasma. Independent blinded random forest prediction models combining gene methylation with clinical information correctly predicted lung cancer in 91% of subjects using sputum detection and 85% of subjects using plasma detection.

Conclusions: High diagnostic accuracy for early-stage lung cancer can be obtained using methylated promoter detection in sputum or plasma. Clin Cancer Res; 23(8); 1998–2005. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pdcVmY
via IFTTT

Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1

Purpose: While immune checkpoint inhibitors are disrupting the management of patients with cancer, anecdotal occurrences of rapid progression (i.e., hyperprogressive disease or HPD) under these agents have been described, suggesting potentially deleterious effects of these drugs. The prevalence, the natural history, and the predictive factors of HPD in patients with cancer treated by anti-PD-1/PD-L1 remain unknown.

Experimental Design: Medical records from all patients (N = 218) prospectively treated in Gustave Roussy by anti-PD-1/PD-L1 within phase I clinical trials were analyzed. The tumor growth rate (TGR) prior ("REFERENCE"; REF) and upon ("EXPERIMENTAL"; EXP) anti-PD-1/PD-L1 therapy was compared to identify patients with accelerated tumor growth. Associations between TGR, clinicopathologic characteristics, and overall survival (OS) were computed.

Results: HPD was defined as a RECIST progression at the first evaluation and as a ≥2-fold increase of the TGR between the REF and the EXP periods. Of 131 evaluable patients, 12 patients (9%) were considered as having HPD. HPD was not associated with higher tumor burden at baseline, nor with any specific tumor type. At progression, patients with HPD had a lower rate of new lesions than patients with disease progression without HPD (P < 0.05). HPD is associated with a higher age (P < 0.05) and a worse outcome (overall survival). Interestingly, REF TGR (before treatment) was inversely correlated with response to anti-PD-1/PD-L1 (P < 0.05) therapy.

Conclusions: A novel aggressive pattern of hyperprogression exists in a fraction of patients treated with anti-PD-1/PD-L1. This observation raises some concerns about treating elderly patients (>65 years old) with anti-PD-1/PD-L1 monotherapy and suggests further study of this phenomenon. Clin Cancer Res; 23(8); 1920–8. ©2016 AACR.

See related commentary by Sharon, p. 1879



from Cancer via ola Kala on Inoreader http://ift.tt/2pd72X3
via IFTTT

Cytidine Deaminase Deficiency Reveals New Therapeutic Opportunities against Cancer

Purpose: One of the main challenges in cancer therapy is the identification of molecular mechanisms mediating resistance or sensitivity to treatment. Cytidine deaminase (CDA) was reported to be downregulated in cells derived from patients with Bloom syndrome, a genetic disease associated with a strong predisposition to a wide range of cancers. The purpose of this study was to determine whether CDA deficiency could be associated with tumors from the general population and could constitute a predictive marker of susceptibility to antitumor drugs.

Experimental Design: We analyzed CDA expression in silico, in large datasets for cancer cell lines and tumors and in various cancer cell lines and primary tumor tissues using IHC, PDXs, qRT-PCR, and Western blotting. We also studied the mechanism underlying CDA silencing and searched for molecules that might target specifically CDA-deficient tumor cells using in silico analysis coupled to classical cellular experimental approaches.

Results: We found that CDA expression is downregulated in about 60% of cancer cells and tissues. We demonstrate that DNA methylation is a prevalent mechanism of CDA silencing in tumors. Finally, we show that CDA-deficient tumor cells can be specifically targeted with epigenetic treatments and with the anticancer drug aminoflavone.

Conclusions: CDA expression status identifies new subgroups of cancers, and CDA deficiency appears to be a novel and relevant predictive marker of susceptibility to antitumor drugs, opening up new possibilities for treating cancer. Clin Cancer Res; 23(8); 2116–26. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pzSc9o
via IFTTT

A Phase II, Randomized, Open-Label Study of Neoadjuvant Degarelix versus LHRH Agonist in Prostate Cancer Patients Prior to Radical Prostatectomy

Purpose: Degarelix, a new gonadotropin-releasing hormone (GnRH) receptor antagonist with demonstrated efficacy as first-line treatment in the management of high-risk prostate cancer, possesses some theoretical advantages over luteinizing hormone–releasing hormone (LHRH) analogues in terms of avoiding "testosterone flare" and lower follicle-stimulating hormone (FSH) levels. We set out to determine whether preoperative degarelix influenced surrogates of disease control in a randomized phase II study.

Experimental Design: Thirty-nine patients were randomly assigned to one of three different neoadjuvant arms: degarelix only, degarelix/bicalutamide, or LHRH agonist/bicalutamide. Treatments were given for 3 months before prostatectomy. Patients had localized prostate cancer and had chosen radical prostatectomy as primary treatment. The primary end point was treatment effect on intratumoral dihydrotestosterone levels.

Results: Intratumoral DHT levels were higher in the degarelix arm than both the degarelix/bicalutamide and LHRH agonist/bicalutamide arms (0.87 ng/g vs. 0.26 ng/g and 0.23 ng/g, P < 0.01). No significant differences existed for other intratumoral androgens, such as testosterone and dehydroepiandrosterone. Patients in the degarelix-only arm had higher AMACR levels on immunohistochemical analysis (P = 0.01). Serum FSH levels were lower after 12 weeks of therapy in both degarelix arms than the LHRH agonist/bicalutamide arm (0.55 and 0.65 vs. 3.65, P < 0.01), and inhibin B levels were lower in the degarelix/bicalutamide arm than the LHRH agonist/bicalutamide arm (82.14 vs. 126.67, P = 0.02).

Conclusions: Neoadjuvant degarelix alone, compared with use of LHRH agonist and bicalutamide, is associated with higher levels of intratumoral dihydrotestosterone, despite similar testosterone levels. Further studies that evaluate the mechanisms behind these results are needed. Clin Cancer Res; 23(8); 1974–80. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pcXj2U
via IFTTT

Randomized, Placebo-Controlled, Phase II Study of Veliparib in Combination with Carboplatin and Paclitaxel for Advanced/Metastatic Non-Small Cell Lung Cancer

Purpose: PARP plays an important role in DNA repair. Veliparib, a PARP inhibitor, enhances the efficacy of platinum compounds and has been safely combined with carboplatin and paclitaxel. The primary endpoint of this phase II trial determined whether addition of veliparib to carboplatin and paclitaxel improved progression-free survival (PFS) in previously untreated patients with advanced/metastatic non–small cell lung cancer.

Experimental Design: Patients were randomized 2:1 to carboplatin and paclitaxel with either veliparib or placebo. Veliparib (120 mg) or placebo was given on days 1 to 7 of each 3-week cycle, with carboplatin (AUC = 6 mg/mL/min) and paclitaxel (200 mg/m2) administered on day 3, for a maximum of 6 cycles.

Results: Overall, 158 were included (median age, 63 years; male 68%, squamous histology 48%). Median PFS was 5.8 months in the veliparib group versus 4.2 months in the placebo group [HR, 0.72; 95% confidence interval (CI), 0.45–1.15; P = 0.17)]. Median overall survival (OS) was 11.7 and 9.1 months in the veliparib and placebo groups, respectively (HR, 0.80; 95% CI, 0.54–1.18; P = 0.27). In patients with squamous histology, median PFS (HR, 0.54; 95% CI, 0.26–1.12; P = 0.098) and OS (HR, 0.73; 95% CI, 0.43–1.24; P = 0.24) favored veliparib treatment. Objective response rate was similar between groups (veliparib: 32.4%; placebo: 32.1%), but duration of response favored veliparib treatment (HR, 0.47; 95% CI, 0.16–1.42; P = 0.18). Grade III/IV neutropenia, thrombocytopenia, and anemia were comparable between groups.

Conclusions: Veliparib combination with carboplatin and paclitaxel was well-tolerated and demonstrated a favorable trend in PFS and OS versus chemotherapy alone. Patients with squamous histology had the best outcomes with veliparib combination. Clin Cancer Res; 23(8); 1937–44. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pAczmG
via IFTTT

Atezolizumab: A PD-L1-Blocking Antibody for Bladder Cancer

Atezolizumab (Tecentriq, MPDL3280A; Genentech/Roche) is an FcR binding–deficient, fully humanized IgG1 mAb designed to interfere with the binding of PD-L1 ligand to its two receptors, PD-1 and B7.1. By blocking the PD-L1/PD-1 immune checkpoint, atezolizumab reduces immunosuppressive signals found within the tumor microenvironment and, consequently, increases T-cell–mediated immunity against the tumor. Atezolizumab has been FDA approved as second-line therapy for advanced bladder cancer. This accelerated approval was based on phase II trial data in patients with metastatic bladder cancer that showed unexpected and durable tumor responses. In subjects whose tumors progressed on first-line platinum-based chemotherapy, the objective response rate was 15%, the complete response rate was 5%, and 1-year overall survival was 36%. In subjects that were chemotherapy naïve and cisplatin ineligible, the objective response rate was 24%, the complete response rate was 7%, and 1-year overall survival was 57%. Better responses were associated with higher PD-L1 expression on the tumor-infiltrating leukocytes. These data suggest that patients with advanced bladder cancer treated with atezolizumab have significantly better response rates and survival than historical controls treated with other second-line regimens. The toxicity profile of atezolizumab is also favorable. Trials are currently assessing whether atezolizumab is effective in earlier bladder cancer stages and in the first-line metastatic setting. Clin Cancer Res; 23(8); 1886–90. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pcUMWw
via IFTTT

Molecular Pathways: Revisiting Glycogen Synthase Kinase-3{beta} as a Target for the Treatment of Cancer

Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, is a complex regulator of numerous cellular functions. GSK-3β is a unique kinase which is constitutively active in resting and nonstimulated cells. GSK-3β has been implicated in a wide range of diseases including neurodegeneration, inflammation and fibrosis, noninsulin-dependent diabetes mellitus, and cancer. It is a regulator of NF-B–mediated survival of cancer cells, which provided a rationale for the development of GSK-3 inhibitors targeting malignant tumors. Recent studies, many of them reported over the past decade, have identified GSK-3β as a potential therapeutic target in more than 15 different types of cancer. Whereas only active GSK-3β is expressed in cancer cell nucleus, aberrant nuclear accumulation of GSK-3β has been identified as a hallmark of cancer cells in malignant tumors of different origin. This review focuses on the preclinical and clinical development of GSK-3 inhibitors and the potential therapeutic impact of targeting GSK-3β in human cancer. Clin Cancer Res; 23(8); 1891–7. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pd328C
via IFTTT

Long-term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination

Purpose: Patients with glioblastoma have less than 15-month median survival despite surgical resection, high-dose radiation, and chemotherapy with temozolomide. We previously demonstrated that targeting cytomegalovirus pp65 using dendritic cells (DC) can extend survival and, in a separate study, that dose-intensified temozolomide (DI-TMZ) and adjuvant granulocyte macrophage colony-stimulating factor (GM-CSF) potentiate tumor-specific immune responses in patients with glioblastoma. Here, we evaluated pp65-specific cellular responses following DI-TMZ with pp65-DCs and determined the effects on long-term progression-free survival (PFS) and overall survival (OS).

Experimental Design: Following standard-of-care, 11 patients with newly diagnosed glioblastoma received DI-TMZ (100 mg/m2/d x 21 days per cycle) with at least three vaccines of pp65 lysosome–associated membrane glycoprotein mRNA-pulsed DCs admixed with GM-CSF on day 23 ± 1 of each cycle. Thereafter, monthly DI-TMZ cycles and pp65-DCs were continued if patients had not progressed.

Results: Following DI-TMZ cycle 1 and three doses of pp65-DCs, pp65 cellular responses significantly increased. After DI-TMZ, both the proportion and proliferation of regulatory T cells (Tregs) increased and remained elevated with serial DI-TMZ cycles. Median PFS and OS were 25.3 months [95% confidence interval (CI), 11.0–] and 41.1 months (95% CI, 21.6–), exceeding survival using recursive partitioning analysis and matched historical controls. Four patients remained progression-free at 59 to 64 months from diagnosis. No known prognostic factors [age, Karnofsky performance status (KPS), IDH-1/2 mutation, and MGMT promoter methylation] predicted more favorable outcomes for the patients in this cohort.

Conclusions: Despite increased Treg proportions following DI-TMZ, patients receiving pp65-DCs showed long-term PFS and OS, confirming prior studies targeting cytomegalovirus in glioblastoma. Clin Cancer Res; 23(8); 1898–909. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pdhAFA
via IFTTT

A First-in-Human Phase I Study of a Bivalent MET Antibody, Emibetuzumab (LY2875358), as Monotherapy and in Combination with Erlotinib in Advanced Cancer

Purpose: The MET/HGF pathway regulates cell proliferation and survival and is dysregulated in multiple tumors. Emibetuzumab (LY2875358) is a bivalent antibody that inhibits HGF-dependent and HGF-independent MET signaling. Here, we report dose escalation results from the first-in-human phase I trial of emibetuzumab.

Experimental Design: The study comprised a 3+3 dose escalation for emibetuzumab monotherapy (Part A) and in combination with erlotinib (Part A2). Emibetuzumab was administered i.v. every 2 weeks (Q2W) using a flat dosing scheme. The primary objective was to determine a recommended phase II dose (RPTD) range; secondary endpoints included tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and antitumor activity.

Results: Twenty-three patients with solid tumors received emibetuzumab monotherapy at 20, 70, 210, 700, 1,400, and 2,000 mg and 14 non–small cell lung cancer (NSCLC) patients at 700, 1,400, and 2,000 mg in combination with erlotinib 150 mg daily. No dose-limiting toxicities and related serious or ≥ grade 3 adverse events were observed. The most common emibetuzumab-related adverse events included mild diarrhea, nausea, and vomiting, and mild to moderate fatigue, anorexia, and hypocalcemia in combination with erlotinib. Emibetuzumab showed linear PK at doses >210 mg. Three durable partial responses were observed, one for emibetuzumab (700 mg) and two for emibetuzumab + erlotinib (700 mg and 2,000 mg). Both of the responders to emibetuzumab + erlotinib had progressed to prior erlotinib and were positive for MET protein tumor expression.

Conclusions: Based on tolerability, PK/PD analysis, and preliminary clinical activity, the RPTD range for emibetuzumab single agent and in combination with erlotinib is 700 to 2,000 mg i.v. Q2W. Clin Cancer Res; 23(8); 1910–9. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pdk1HZ
via IFTTT

A Novel Compound ARN-3236 Inhibits Salt-Inducible Kinase 2 and Sensitizes Ovarian Cancer Cell Lines and Xenografts to Paclitaxel

Purpose: Salt-inducible kinase 2 (SIK2) is a centrosome kinase required for mitotic spindle formation and a potential target for ovarian cancer therapy. Here, we examine the effects of a novel small-molecule SIK2 inhibitor, ARN-3236, on sensitivity to paclitaxel in ovarian cancer.

Experimental Design: SIK2 expression was determined in ovarian cancer tissue samples and cell lines. ARN-3236 was tested for its efficiency to inhibit growth and enhance paclitaxel sensitivity in cultures and xenografts of ovarian cancer cell lines. SIK2 siRNA and ARN-3236 were compared for their ability to produce nuclear–centrosome dissociation, inhibit centrosome splitting, block mitotic progression, induce tetraploidy, trigger apoptotic cell death, and reduce AKT/survivin signaling.

Results: SIK2 is overexpressed in approximately 30% of high-grade serous ovarian cancers. ARN-3236 inhibited the growth of 10 ovarian cancer cell lines at an IC50 of 0.8 to 2.6 μmol/L, where the IC50 of ARN-3236 was inversely correlated with endogenous SIK2 expression (Pearson r = –0.642, P = 0.03). ARN-3236 enhanced sensitivity to paclitaxel in 8 of 10 cell lines, as well as in SKOv3ip (P = 0.028) and OVCAR8 xenografts. In at least three cell lines, a synergistic interaction was observed. ARN-3236 uncoupled the centrosome from the nucleus in interphase, blocked centrosome separation in mitosis, caused prometaphase arrest, and induced apoptotic cell death and tetraploidy. ARN-3236 also inhibited AKT phosphorylation and attenuated survivin expression.

Conclusions: ARN-3236 is the first orally available inhibitor of SIK2 to be evaluated against ovarian cancer in preclinical models and shows promise in inhibiting ovarian cancer growth and enhancing paclitaxel chemosensitivity. Clin Cancer Res; 23(8); 1945–54. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pAcxey
via IFTTT

Correction: Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1-Mediated Lipogenesis



from Cancer via ola Kala on Inoreader http://ift.tt/2pcZeEo
via IFTTT

The MAPK Pathway Regulates Intrinsic Resistance to BET Inhibitors in Colorectal Cancer

Purpose: The bromodomain and extra-terminal domain (BET) family proteins are epigenetic readers for acetylated histone marks. Emerging BET bromodomain inhibitors have exhibited antineoplastic activities in a wide range of human cancers through suppression of oncogenic transcription factors, including MYC. However, the preclinical activities of BET inhibitors in advanced solid cancers are moderate at best. To improve BET-targeted therapy, we interrogated mechanisms mediating resistance to BET inhibitors in colorectal cancer.

Experimental Design: Using a panel of molecularly defined colorectal cancer cell lines, we examined the impact of BET inhibition on cellular proliferation and survival as well as MYC activity. We further tested the ability of inhibitors targeting the RAF/MEK/ERK (MAPK) pathway to enhance MYC suppression and circumvent intrinsic resistance to BET inhibitors. Key findings were validated using genetic approaches.

Results: BET inhibitors as monotherapy moderately reduced colorectal cancer cell proliferation and MYC expression. Blockade of the MAPK pathway synergistically sensitized colorectal cancer cells to BET inhibitors, leading to potent apoptosis and MYC downregulation in vitro and in vivo. A combination of JQ1 and trametinib, but neither agent alone, induced significant regression of subcutaneous colorectal cancer xenografts.

Conclusions: Our findings suggest that the MAPK pathway confers intrinsic resistance to BET inhibitors in colorectal cancer and propose an effective combination strategy for the treatment of colorectal cancer. Clin Cancer Res; 23(8); 2027–37. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2pzXlyp
via IFTTT

A Potent In Vivo Antitumor Efficacy of Novel Recombinant Type I Interferon

Purpose: Antiproliferative, antiviral, and immunomodulatory activities of endogenous type I IFNs (IFN1) prompt the design of recombinant IFN1 for therapeutic purposes. However, most of the designed IFNs exhibited suboptimal therapeutic efficacies against solid tumors. Here, we report evaluation of the in vitro and in vivo antitumorigenic activities of a novel recombinant IFN termed sIFN-I.

Experimental Design: We compared primary and tertiary structures of sIFN-I with its parental human IFNα-2b, as well as affinities of these ligands for IFN1 receptor chains and pharmacokinetics. These IFN1 species were also compared for their ability to induce JAK–STAT signaling and expression of the IFN1-stimulated genes and to elicit antitumorigenic effects. Effects of sIFN-I on tumor angiogenesis and immune infiltration were also tested in transplanted and genetically engineered immunocompetent mouse models.

Results: sIFN-I displayed greater affinity for IFNAR1 (over IFNAR2) chain of the IFN1 receptor and elicited a greater extent of IFN1 signaling and expression of IFN-inducible genes in human cells. Unlike IFNα-2b, sIFN-I induced JAK–STAT signaling in mouse cells and exhibited an extended half-life in mice. Treatment with sIFN-I inhibited intratumoral angiogenesis, increased CD8+ T-cell infiltration, and robustly suppressed growth of transplantable and genetically engineered tumors in immunodeficient and immunocompetent mice.

Conclusions: These findings define sIFN-I as a novel recombinant IFN1 with potent preclinical antitumorigenic effects against solid tumor, thereby prompting the assessment of sIFN-I clinical efficacy in humans. Clin Cancer Res; 23(8); 2038–49. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2nLliGp
via IFTTT

Differential PI3K{delta} Signaling in CD4+ T-cell Subsets Enables Selective Targeting of T Regulatory Cells to Enhance Cancer Immunotherapy

To modulate T-cell function for cancer therapy, one challenge is to selectively attenuate regulatory but not conventional CD4+ T-cell subsets [regulatory T cell (Treg) and conventional T cell (Tconv)]. In this study, we show how a functional dichotomy in Class IA PI3K isoforms in these two subsets of CD4+ T cells can be exploited to target Treg while leaving Tconv intact. Studies employing isoform-specific PI3K inhibitors and a PI3Kδ-deficient mouse strain revealed that PI3Kα and PI3Kβ were functionally redundant with PI3Kδ in Tconv. Conversely, PI3Kδ was functionally critical in Treg, acting there to control T-cell receptor signaling, cell proliferation, and survival. Notably, in a murine model of lung cancer, coadministration of a PI3Kδ-specific inhibitor with a tumor-specific vaccine decreased numbers of suppressive Treg and increased numbers of vaccine-induced CD8 T cells within the tumor microenvironment, eliciting potent antitumor efficacy. Overall, our results offer a mechanistic rationale to employ PI3Kδ inhibitors to selectively target Treg and improve cancer immunotherapy. Cancer Res; 77(8); 1892–904. ©2017 AACR.

http://ift.tt/2osucpe

HSPA5 Regulates Ferroptotic Cell Death in Cancer Cells

Ferroptosis is a form of regulated cell death driven by oxidative injury promoting lipid peroxidation, although detailed molecular regulators are largely unknown. Here, we show that heatshock 70-kDa protein 5 (HSPA5) negatively regulates ferroptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. Mechanistically, activating transcription factor 4 (ATF4) resulted in the induction of HSPA5, which in turn bound glutathione peroxidase 4 (GPX4) and protected against GPX4 protein degradation and subsequent lipid peroxidation. Importantly, the HSPA5–GPX4 pathway mediated ferroptosis resistance, limiting the anticancer activity of gemcitabine. Genetic or pharmacologic inhibition of the HSPA5–GPX4 pathway enhanced gemcitabine sensitivity by disinhibiting ferroptosis in vitro and in both subcutaneous and orthotopic animal models of PDAC. Collectively, these findings identify a novel role of HSPA5 in ferroptosis and suggest a potential therapeutic strategy for overcoming gemcitabine resistance. Cancer Res; 77(8); 2064–77. ©2017 AACR.

http://ift.tt/2p2cEUk

Lapatinib Resistance in Breast Cancer Cells Is Accompanied by Phosphorylation-Mediated Reprogramming of Glycolysis

HER2/ERBB2–overexpressing breast cancers targeted effectively by the small-molecule kinase inhibitor lapatinib frequently acquire resistance to this drug. In this study, we employed explorative mass spectrometry to profile proteome, kinome, and phosphoproteome changes in an established model of lapatinib resistance to systematically investigate initial inhibitor response and subsequent reprogramming in resistance. The resulting dataset, which collectively contains quantitative data for >7,800 proteins, >300 protein kinases, and >15,000 phosphopeptides, enabled deep insight into signaling recovery and molecular reprogramming upon resistance. Our data-driven approach confirmed previously described mechanisms of resistance (e.g., AXL overexpression and PIK3 reactivation), revealed novel pharmacologically actionable targets, and confirmed the expectation of significant heterogeneity in molecular resistance drivers inducing distinct phenotypic changes. Furthermore, our approach identified an extensive and exclusively phosphorylation-mediated reprogramming of glycolytic activity, supported additionally by widespread changes of corresponding metabolites and an increased sensitivity towards glycolysis inhibition. Collectively, our multi-omic analysis offers deeper perspectives on cancer drug resistance and suggests new biomarkers and treatment options for lapatinib-resistant cancers. Cancer Res; 77(8); 1842–53. ©2017 AACR.

http://ift.tt/2osrIqT

Armed Oncolytic Adenovirus-Expressing PD-L1 Mini-Body Enhances Antitumor Effects of Chimeric Antigen Receptor T Cells in Solid Tumors

Chimeric antigen receptor–modified T cells (CAR T cells) produce proinflammatory cytokines that increase expression of T-cell checkpoint signals such as PD-L1, which may inhibit their functionality against solid tumors. In this study, we evaluated in human tumor xenograft models the proinflammatory properties of an oncolytic adenovirus (Onc.Ad) with a helper-dependent Ad (HDAd) that expresses a PD-L1 blocking mini-antibody (mini-body; HDPDL1) as a strategy to enhance CAR T-cell killing. Coadministration of these agents (CAd-VECPDL1) exhibited oncolytic effects with production of PD-L1 mini-body locally at the tumor site. On their own, HDPDL1 exhibited no antitumor effect and CAd-VECPDL1 alone reduced tumors only to volumes comparable to Onc.Ad treatment. However, combining CAd-VECPDL1 with HER2.CAR T cells enhanced antitumor activity compared with treatment with either HER2.CAR T cells alone or HER2.CAR T cells plus Onc.Ad. The benefits of locally produced PD-L1 mini-body by CAd-VECPDL1 could not be replicated by infusion of anti-PD-L1 IgG plus HER2.CAR T cells and coadministration of Onc.Ad in an HER2+ prostate cancer xenograft model. Overall, our data document the superiority of local production of PD-L1 mini-body by CAd-VECPDL1 combined with administration of tumor-directed CAR T cells to control the growth of solid tumors. Cancer Res; 77(8); 2040–51. ©2017 AACR.

http://ift.tt/2p27BD8

Biomarker-Based PET Imaging of Diffuse Intrinsic Pontine Glioma in Mouse Models

Diffuse intrinsic pontine glioma (DIPG) is a childhood brainstem tumor with a universally poor prognosis. Here, we characterize a positron emission tomography (PET) probe for imaging DIPG in vivo. In human histological tissues, the probes target, PARP1, was highly expressed in DIPG compared to normal brain. PET imaging allowed for the sensitive detection of DIPG in a genetically engineered mouse model, and probe uptake correlated to histologically determined tumor infiltration. Imaging with the sister fluorescence agent revealed that uptake was confined to proliferating, PARP1-expressing cells. Comparison with other imaging technologies revealed remarkable accuracy of our biomarker approach. We subsequently demonstrated that serial imaging of DIPG in mouse models enables monitoring of tumor growth, as shown in modeling of tumor progression. Overall, this validated method for quantifying DIPG burden would serve useful in monitoring treatment response in early phase clinical trials. Cancer Res; 77(8); 2112–23. ©2017 AACR.

http://ift.tt/2p2dmkd

Extracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases

Mechanisms underlying the propensity of latent lung adenocarcinoma (LUAD) to relapse are poorly understood. In this study, we show how differential expression of a network of extracellular matrix (ECM) molecules and their interacting proteins contributes to risk of relapse in distinct LUAD subtypes. Overexpression of the hyaluronan receptor HMMR in primary LUAD was associated with an inflammatory molecular signature and poor prognosis. Attenuating HMMR in LUAD cells diminished their ability to initiate lung tumors and distant metastases. HMMR upregulation was not required for dissemination in vivo, but enhanced ECM-mediated signaling, LUAD cell survival, and micrometastasis expansion in hyaluronan-rich microenvironments in the lung and brain metastatic niches. Our findings reveal an important mechanism by which disseminated cancer cells can coopt the inflammatory ECM to persist, leading to brain metastatic outgrowths. Cancer Res; 77(8); 1905–17. ©2017 AACR.

http://ift.tt/2oszxNA

Behind the Scenes: Endo/Exocytosis in the Acquisition of Metastatic Traits

Alterations of endo/exocytic proteins have long been associated with malignant transformation, and genes encoding membrane trafficking proteins have been identified as bona fide drivers of tumorigenesis. Focusing on the mechanisms underlying the impact of endo/exocytic proteins in cancer, a scenario emerges in which altered trafficking routes/networks appear to be preferentially involved in the acquisition of prometastatic traits. This involvement in metastasis frequently occurs through the integration of programs leading to migratory/invasive phenotypes, survival and resistance to environmental stresses, epithelial-to-mesenchymal transition, and the emergence of cancer stem cells. These findings might have important implications in the clinical setting for the development of metastasis-specific drugs and for patient stratification to optimize the use of available therapies. Cancer Res; 77(8); 1813–7. ©2017 AACR.

http://ift.tt/2osmImr

Correction: Mutational Landscape of Pediatric Acute Lymphoblastic Leukemia



http://ift.tt/2p22suR

E3 Ubiquitin Ligase UBR5 Drives the Growth and Metastasis of Triple-Negative Breast Cancer

Patients with triple-negative breast cancers (TNBC) are at high risk for recurrence and metastasis at an early time despite standard treatment, underscoring the need for novel therapeutic modalities. Here, we report for the first time a distinctive and profound role of the E3 ubiquitin ligase UBR5 in the growth and metastasis of TNBC. An analysis of primary TNBC specimen by whole-exon sequencing revealed strong gene amplifications of UBR5 associated with the disease. UBR5 overexpression in TNBC tissues was confirmed at mRNA and protein levels. CRISPR/Cas9-mediated deletion of ubr5 in an experimental murine mammary carcinoma model of TNBC dramatically abrogated tumor growth and metastasis in vivo, which could be reversed completely via reconstitution with wild-type UBR5 but not a catalytically inactive mutant. Loss of UBR5 caused an impairment in angiogenesis within the tumor, associated with increased apoptosis, necrosis, and growth arrest. Absence of UBR5 in the tumor triggered aberrant epithelial-to-mesenchymal transition, principally via abrogated expression of E-cadherin, which resulted in severely reduced tumor metastasis to secondary organs. Use of NOD/SCID mice revealed that tumor-derived UBR5 facilitated tumor growth in a manner completely dependent upon immune cells in the microenvironment, whereas it promoted metastasis in a tumor cell–autonomous fashion. Our findings unveil UBR5 as a novel and critical regulator of tumor growth, metastasis, and immune response and highlight the potential for UBR5 as an effective therapeutic target for the treatment of highly aggressive breast and ovarian cancers that fail conventional therapy. Cancer Res; 77(8); 2090–101. ©2017 AACR.

http://ift.tt/2p2djox

Highlights from Recent Cancer Literature



http://ift.tt/2p27BTE

Cyp24a1 Attenuation Limits Progression of BrafV600E-Induced Papillary Thyroid Cancer Cells and Sensitizes Them to BRAFV600E Inhibitor PLX4720

CYP24A1, the primary inactivating enzyme for vitamin D, is often overexpressed in human cancers, potentially neutralizing the antitumor effects of calcitriol, the active form of vitamin D. However, it is unclear whether CYP24A1 expression serves as a functional contributor versus only a biomarker for tumor progression. In this study, we investigated the role of CYP24A1 on malignant progression of a murine model of BrafV600E-induced papillary thyroid cancer (PTC). Mice harboring wild-type Cyp24a1 (BVECyp24a1-wt) developed PTC at 5 weeks of age. Mice harboring a homozygous deletion of Cyp24a1 (BVECyp24a1-null) exhibited a 4-fold reduction in tumor growth. Notably, we found the tumorigenic potential of BVECyp24a1-null-derived tumor cells to be nearly abolished in immunocompromised nude mice. This phenotype was associated with downregulation of the MAPK, PI3K/Akt, and TGFβ signaling pathways and a loss of epithelial–mesenchymal transition (EMT) in BVECyp24a1-null cells, associated with downregulation of genes involved in EMT, tumor invasion, and metastasis. While calcitriol treatment did not decrease cell proliferation in BVECyp24a1-null cells, it strengthened antitumor responses to the BRAFV600E inhibitor PLX4720 in both BVECyp24a1-null and BVECyp24a1-wt cells. Our findings offer direct evidence that Cyp24a1 functions as an oncogene in PTC, where its overexpression activates multiple signaling cascades to promote malignant progression and resistance to PLX4720 treatment. Cancer Res; 77(8); 2161–72. ©2017 AACR.

http://ift.tt/2p27CHc

The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists

Humans consider themselves discrete autonomous organisms, but recent research is rapidly strengthening the appreciation that associated microorganisms make essential contributions to human health and well being. Each person is inhabited and also surrounded by his/her own signature microbial cloud. A low diversity of microorganisms is associated with a plethora of diseases, including allergy, diabetes, obesity, arthritis, inflammatory bowel diseases, and even neuropsychiatric disorders. Thus, an interaction of microorganisms with the host immune system is required for a healthy body. Exposure to microorganisms from the moment we are born and appropriate microbiome assembly during childhood are essential for establishing an active immune system necessary to prevent disease later in life. Exposure to microorganisms educates the immune system, induces adaptive immunity, and initiates memory B and T cells that are essential to combat various pathogens. The correct microbial-based education of immune cells may be critical in preventing the development of autoimmune diseases and cancer. This review provides a broad overview of the importance of the host microbiome and accumulating knowledge of how it regulates and maintains a healthy human system. Cancer Res; 77(8); 1783–812. ©2017 AACR.

http://ift.tt/2osvxMK

Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin-EGFR Pathway

Lung cancers with activating KRAS mutations are characterized by treatment resistance and poor prognosis. In particular, the basis for their resistance to radiation therapy is poorly understood. Here, we describe a radiation resistance phenotype conferred by a stem-like subpopulation characterized by mitosis-like condensed chromatin (MLCC), high CD133 expression, invasive potential, and tumor-initiating properties. Mechanistic investigations defined a pathway involving osteopontin and the EGFR in promoting this phenotype. Osteopontin/EGFR–dependent MLCC protected cells against radiation-induced DNA double-strand breaks and repressed putative negative regulators of stem-like properties, such as CRMP1 and BIM. The MLCC-positive phenotype defined a subset of KRAS-mutated lung cancers that were enriched for co-occurring genomic alterations in TP53 and CDKN2A. Our results illuminate the basis for the radiation resistance of KRAS-mutated lung cancers, with possible implications for prognostic and therapeutic strategies. Cancer Res; 77(8); 2018–28. ©2017 AACR.

http://ift.tt/2p2ffNJ

Effective Combination Therapies for B-cell Lymphoma Predicted by a Virtual Disease Model

The complexity of cancer signaling networks limits the efficacy of most single-agent treatments and brings about challenges in identifying effective combinatorial therapies. In this study, we used chronic active B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma as a model system to establish a computational framework to optimize combinatorial therapy in silico. We constructed a detailed kinetic model of the BCR signaling network, which captured the known complex cross-talk between the NFκB, ERK, and AKT pathways and multiple feedback loops. Combining this signaling model with a data-derived tumor growth model, we predicted viability responses of many single drug and drug combinations in agreement with experimental data. Under this framework, we exhaustively predicted and ranked the efficacy and synergism of all possible combinatorial inhibitions of eleven currently targetable kinases in the BCR signaling network. Ultimately, our work establishes a detailed kinetic model of the core BCR signaling network and provides the means to explore the large space of possible drug combinations. Cancer Res; 77(8); 1818–30. ©2017 AACR.

http://ift.tt/2osrKz1

Combined PET Imaging of the Inflammatory Tumor Microenvironment Identifies Margins of Unique Radiotracer Uptake

The tumor microenvironment is highly heterogeneous. For gliomas, the tumor-associated inflammatory response is pivotal to support growth and invasion. Factors of glioma growth, inflammation, and invasion, such as the translocator protein (TSPO) and matrix metalloproteinases (MMP), may serve as specific imaging biomarkers of the glioma microenvironment. In this study, noninvasive imaging by PET with [18F]DPA-714 (TSPO) and [18F]BR-351 (MMP) was used for the assessment of localization and quantification of the expression of TSPO and MMP. Imaging was performed in addition to established clinical imaging biomarker of active tumor volume ([18F]FET) in conjunction with MRI. We hypothesized that each imaging biomarker revealed distinct areas of the heterogeneous glioma tissue in a mouse model of human glioma. Tracers were found to be increased 1.4- to 1.7-fold, with [18F]FET showing the biggest volume as depicted by a thresholding-based, volumes of interest analysis. Tumor areas, which could not be detected by a single tracer and/or MRI parameter alone, were measured. Specific compartments of [18F]DPA-714 (14%) and [18F]BR-351 (11%) volumes along the tumor rim could be identified. [18F]DPA-714 (TSPO) and [18F]BR-351 (MMP) matched with histology. Glioma-associated microglia/macrophages (GAM) were identified as TSPO and MMP sources. Multitracer and multimodal molecular imaging approaches may allow us to gain important insights into glioma-associated inflammation (GAM, MMP). Moreover, this noninvasive technique enables characterization of the glioma microenvironment with respect to the disease-driving cellular compartments at the various disease stages. Cancer Res; 77(8); 1831–41. ©2017 AACR.

http://ift.tt/2oslCa6

Cellular Model of Colon Cancer Progression Reveals Signatures of mRNAs, miRNA, lncRNAs, and Epigenetic Modifications Associated with Metastasis

Here, we developed and comprehensively characterized a cellular model of colon cancer progression consisting of four defined derivatives of a colon cancer cell line that resulted from consecutive epithelial–mesenchymal and mesenchymal–epithelial transitions (EMT/MET) and phenotypically recapitulate the metastatic cascade. Initial EMT was induced by prolonged exposure to IL6, a cytokine also generated by the tumor-stroma. Genome-wide characterization of transcriptional (mRNA, miRNA, and lncRNA) and epigenetic (DNA methylation, H3K4me3, H3K79me3, and H3K27me3 histone modifications) profiles of the cell derivatives, combined with correlative analyses of expression, methylation, and clinical data from the TCGA-COAD database gave insights into the molecular basis of their phenotypic changes. The signatures characterizing invasive, mesenchymal-like cell states as well as the metastases-derived epithelial-like state showed significant association with metastasis, positive nodal status, and poor survival of colon cancer patients. Global hypomethylation of gene-regulatory regions was observed during tumor progression, with the lowest degree of methylation present in cells isolated from metastases. Upregulation of an axon-guidance–related gene signature was the most significant feature of metastatic tumor cells and was also found in primary tumors from colon cancer patients with distant metastases. Furthermore, the microRNAs miR-99a, miR-100, and miR-125b showed elevated expression in mesenchymal-like cells, associated with poor survival, and promoted migration and invasion. Finally, elevated expression of H19 lncRNA due to promoter demethylation was observed in cells isolated from metastases and was associated with poor survival of colon cancer patients. In the future, our results may be further exploited for the discovery and evaluation of novel metastasis-associated mechanisms and biomarkers. Cancer Res; 77(8); 1854–67. ©2017 AACR.

http://ift.tt/2ostHLO

PanIN Neuroendocrine Cells Promote Tumorigenesis via Neuronal Cross-talk

Nerves are a notable feature of the tumor microenvironment in some epithelial tumors, but their role in the malignant progression of pancreatic ductal adenocarcinoma (PDAC) is uncertain. Here, we identify dense innervation in the microenvironment of precancerous pancreatic lesions, known as pancreatic intraepithelial neoplasms (PanIN), and describe a unique subpopulation of neuroendocrine PanIN cells that express the neuropeptide substance P (SP) receptor neurokinin 1-R (NK1-R). Using organoid culture, we demonstrated that sensory neurons promoted the proliferation of PanIN organoids via SP-NK1-R signaling and STAT3 activation. Nerve-responsive neuroendocrine cells exerted trophic influences and potentiated global PanIN organoid growth. Sensory denervation of a genetically engineered mouse model of PDAC led to loss of STAT3 activation, a decrease in the neoplastic neuroendocrine cell population, and impaired PanIN progression to tumor. Overall, our data provide evidence that nerves of the PanIN microenvironment promote oncogenesis, likely via direct signaling to neoplastic neuroendocrine cells capable of trophic influences. These findings identify neuroepithelial cross-talk as a potential novel target in PDAC treatment. Cancer Res; 77(8); 1868–79. ©2017 AACR.

http://ift.tt/2osu3lD

Cancer Stem Cells Regulate Cancer-Associated Fibroblasts via Activation of Hedgehog Signaling in Mammary Gland Tumors

Many tumors display intracellular heterogeneity with subsets of cancer stem cells (CSC) that sustain tumor growth, recurrence, and therapy resistance. Cancer-associated fibroblasts (CAF) have been shown to support and regulate CSC function. Here, we investigate the interactions between CSCs and CAFs in mammary gland tumors driven by combined activation of Wnt/β-catenin and Hgf/Met signaling in mouse mammary epithelial cells. In this setting, CSCs secrete the Hedgehog ligand SHH, which regulate CAFs via paracrine activation of Hedgehog signaling. CAFs subsequently secrete factors that promote expansion and self-renewal of CSCs. In vivo treatment of tumors with the Hedgehog inhibitor vismodegib reduce CAF and CSC expansion, resulting in an overall delay of tumor formation. Our results identify a novel intracellular signaling module that synergistically regulates CAFs and CSCs. Targeting CAFs with Hedgehog inhibitors may offer a novel therapeutic strategy against breast cancer. Cancer Res; 77(8); 2134–47. ©2017 AACR.

http://ift.tt/2p2bPuv

LIGHT Elevation Enhances Immune Eradication of Colon Cancer Metastases

The majority of patients with colon cancer will develop advanced disease, with the liver being the most common site of metastatic disease. Patients with increased numbers of tumor-infiltrating lymphocytes in primary colon tumors and liver metastases have improved outcomes. However, the molecular factors that could empower antitumor immune responses in this setting remain to be elucidated. We reported that the immunostimulatory cytokine LIGHT (TNFSF14) in the microenvironment of colon cancer metastases associates with improved patient survival, and here we demonstrate in an immunocompetent murine model that colon tumors expressing LIGHT stimulate lymphocyte proliferation and tumor cell–specific antitumor immune responses. In this model, increasing LIGHT expression in the microenvironment of either primary tumors or liver metastases triggered regression of established tumors and slowed the growth of liver metastases, driven by cytotoxic T-lymphocyte–mediated antitumor immunity. These responses corresponded with significant increases in tumor-infiltrating lymphocytes and increased expression of lymphocyte-homing signals in the metastatic tumors. Furthermore, we demonstrated evidence of durable tumor-specific antitumor immunity. In conclusion, increasing LIGHT expression increased T-cell proliferation, activation, and infiltration, resulting in enhanced tumor-specific immune-mediated tumor regressions in primary tumors and colorectal liver metastases. Mechanisms to increase LIGHT in the colon cancer microenvironment warrant further investigation and hold promise as an immunotherapeutic strategy. Cancer Res; 77(8); 1880–91. ©2017 AACR.

http://ift.tt/2osun42

miRNA-520f Reverses Epithelial-to-Mesenchymal Transition by Targeting ADAM9 and TGFBR2

Reversing epithelial-to-mesenchymal transition (EMT) in cancer cells has been widely considered as an approach to combat cancer progression and therapeutic resistance, but a limited number of broadly comprehensive investigations of miRNAs involved in this process have been conducted. In this study, we screened a library of 1120 miRNA for their ability to transcriptionally activate the E-cadherin gene CDH1 in a promoter reporter assay as a measure of EMT reversal. By this approach, we defined miR-520f as a novel EMT-reversing miRNA. miR-520f expression was sufficient to restore endogenous levels of E-cadherin in cancer cell lines exhibiting strong or intermediate mesenchymal phenotypes. In parallel, miR-520f inhibited invasive behavior in multiple cancer cell systems and reduced metastasis in an experimental mouse model of lung metastasis. Mechanistically, miR-520f inhibited tumor cell invasion by directly targeting ADAM9, the TGFβ receptor TGFBR2 and the EMT inducers ZEB1, ZEB2, and the snail transcriptional repressor SNAI2, each crucial factors in mediating EMT. Collectively, our results show that miR-520f exerts anti-invasive and antimetastatic effects in vitro and in vivo, warranting further study in clinical settings. Cancer Res; 77(8); 2008–17. ©2017 AACR.

http://ift.tt/2p2g21p

Cyp24a1 Attenuation Limits Progression of BrafV600E-Induced Papillary Thyroid Cancer Cells and Sensitizes Them to BRAFV600E Inhibitor PLX4720

CYP24A1, the primary inactivating enzyme for vitamin D, is often overexpressed in human cancers, potentially neutralizing the antitumor effects of calcitriol, the active form of vitamin D. However, it is unclear whether CYP24A1 expression serves as a functional contributor versus only a biomarker for tumor progression. In this study, we investigated the role of CYP24A1 on malignant progression of a murine model of BrafV600E-induced papillary thyroid cancer (PTC). Mice harboring wild-type Cyp24a1 (BVECyp24a1-wt) developed PTC at 5 weeks of age. Mice harboring a homozygous deletion of Cyp24a1 (BVECyp24a1-null) exhibited a 4-fold reduction in tumor growth. Notably, we found the tumorigenic potential of BVECyp24a1-null-derived tumor cells to be nearly abolished in immunocompromised nude mice. This phenotype was associated with downregulation of the MAPK, PI3K/Akt, and TGFβ signaling pathways and a loss of epithelial–mesenchymal transition (EMT) in BVECyp24a1-null cells, associated with downregulation of genes involved in EMT, tumor invasion, and metastasis. While calcitriol treatment did not decrease cell proliferation in BVECyp24a1-null cells, it strengthened antitumor responses to the BRAFV600E inhibitor PLX4720 in both BVECyp24a1-null and BVECyp24a1-wt cells. Our findings offer direct evidence that Cyp24a1 functions as an oncogene in PTC, where its overexpression activates multiple signaling cascades to promote malignant progression and resistance to PLX4720 treatment. Cancer Res; 77(8); 2161–72. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2p27CHc
via IFTTT

Effective Combination Therapies for B-cell Lymphoma Predicted by a Virtual Disease Model

The complexity of cancer signaling networks limits the efficacy of most single-agent treatments and brings about challenges in identifying effective combinatorial therapies. In this study, we used chronic active B-cell receptor (BCR) signaling in diffuse large B-cell lymphoma as a model system to establish a computational framework to optimize combinatorial therapy in silico. We constructed a detailed kinetic model of the BCR signaling network, which captured the known complex cross-talk between the NFκB, ERK, and AKT pathways and multiple feedback loops. Combining this signaling model with a data-derived tumor growth model, we predicted viability responses of many single drug and drug combinations in agreement with experimental data. Under this framework, we exhaustively predicted and ranked the efficacy and synergism of all possible combinatorial inhibitions of eleven currently targetable kinases in the BCR signaling network. Ultimately, our work establishes a detailed kinetic model of the core BCR signaling network and provides the means to explore the large space of possible drug combinations. Cancer Res; 77(8); 1818–30. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2osrKz1
via IFTTT