Abstract
Background
Enlarged retropharyngeal lymph nodes (RLNs) are very common in patients with nasopharyngeal carcinoma (NPC) undergoing radiotherapy. The most suitable treatment option for enlarged RLNs depends on the pathological results. However, RLN sampling is difficult and imminent in the clinic setting. We recently developed a novel minimally invasive technique termed endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) for sampling RLN tissues sufficient for pathological or cytological diagnosis.
Methods
We enrolled 30 post-radiotherapy patients with NPC with suspected RLN metastasis detected via magnetic resonance imaging (MRI). The EUS probe was introduced into the nasopharynx via the nostrils, and EUS was then used to scan the retropharyngeal space and locate the RLN in the anterior carotid sheath. EUS-FNA was subsequently performed. The safety and efficacy of using EUS-FNA to sample the RLN tissues were assessed.
Results
Strips of tissue were successfully sampled from all patients using EUS-FNA. Of the 30 patients, 23 were confirmed to have cancer cells in the biopsied tissues via pathology or cytology examinations with 1 EUS-FNA biopsy session. The seven cases without confirmed cancer cells were subsequently reanalyzed by using another EUS-FNA biopsy session, and two more cases were confirmed possessing cancer cells. The other five patients without confirmed cancer cells were closely followed with MRI every month for 3 months. After follow-up for 3 months, three patients were still considered cancer-free due to the presence of RLNs with stable or shrinking diameters. The rest two patients who showed progressive disease underwent a third EUS-FNA biopsy procedure and were further confirmed to be cancer cell-positive. In the whole cohort reported here, the EUS-FNA procedure was not associated with any severe complications.
Conclusion
EUS-FNA is a safe and effective diagnostic approach for sampling tissues from the RLNs in patients with suspected recurrent NPC.
from Cancer via ola Kala on Inoreader https://ift.tt/2IsnWdy
via IFTTT