Τετάρτη 14 Φεβρουαρίου 2018

Coactivation of Estrogen Receptor and IKK{beta} Induces a Dormant Metastatic Phenotype in ER-Positive Breast Cancer

A growing body of evidence suggests that the inflammatory NFκB pathway is associated with the progression of ER+ tumors to more aggressive stages. However, it is unknown whether NFκB is a driver or a consequence of aggressive ER+ disease. To investigate this question, we developed breast cancer cell lines expressing an inducible, constitutively active form of IκB kinase β (CA-IKKβ), a key kinase in the canonical NFκB pathway. We found that CA-IKKβ blocked E2-dependent cell proliferation in vitro and tumor growth in vivo in a reversible manner, suggesting that IKKβ may contribute to tumor dormancy and recurrence of ER+ disease. Moreover, coactivation of ER and IKKβ promoted cell migration and invasion in vitro and drove experimental metastasis in vivo. Gene expression profiling revealed a strong association between ER and CA-IKKβ–driven gene expression and clinically relevant invasion and metastasis gene signatures. Mechanistically, the invasive phenotype appeared to be driven by an expansion of a basal/stem-like cell population rather than EMT. Taken together, our findings suggest that coactivation of ER and the canonical NFκB pathway promotes a dormant, metastatic phenotype in ER+ breast cancer and implicates IKKβ as a driver of certain features of aggressive ER+ breast cancer.Significance: The canonical NFκB pathway promotes expansion of stem/basal-like cells and a dormant, metastatic phenotype in ER+ breast cancer cells. Cancer Res; 78(4); 974–84. ©2017 AACR.

http://ift.tt/2Gd7l96

Correction: Differential Toxicity in Patients with and without DNA Repair Mutations: Phase I Study of Carboplatin and Talazoparib in Advanced Solid Tumors



from Cancer via ola Kala on Inoreader http://ift.tt/2HiXlfQ
via IFTTT

Clinical Significance of PD-L1+ Exosomes in Plasma of Head and Neck Cancer Patients

Purpose: The microenvironment of head and neck squamous cell carcinomas (HNSCC) is highly immunosuppressive. HNSCCs expressing elevated levels of PD-L1 have especially poor outcome. Exosomes that carry PD-L1 and suppress T-cell functions have been isolated from plasma of patients with HNSCC. The potential contributions of PD-L1+ exosomes to immune suppression and disease activity are evaluated.

Experimental Design: Exosomes isolated from plasma of 40 HNSCC patients by size exclusion chromatography were captured on beads using anti-CD63 Abs, stained for PD-1 and PD-L1 and analyzed by flow cytometry. The percentages and mean fluorescence intensities (MFI) of PD-L1+ and PD-1+ exosome/bead complexes were correlated with the patients' clinicopathologic data. PD-L1high or PD-L1low exosomes were incubated with activated CD69+ human CD8+ T cells ± PD-1 inhibitor. Changes in CD69 expression levels on T cells were measured. Patients' plasma was tested for soluble PD-L1 (sPD-L1) by ELISA.

Results: Levels of PD-L1 carried by exosomes correlated with patients' disease activity, the UICC stage and the lymph node status (P = 0.0008–0.013). In contrast, plasma levels of sPD-L1 or exosome PD-1 levels did not correlate with any clinicopathologic parameters. CD69 expression levels were inhibited (P < 0.03) by coincubation with PD-L1high but not by PD-L1low exosomes. Blocking of PD-L1+ exosome signaling to PD-1+ T cells attenuated immune suppression.

Conclusions: PD-L1 levels on exosomes, but not levels of sPD-L1, associated with disease progression in HNSCC patients. Circulating PD-L1+ exosomes emerge as useful metrics of disease and immune activity in HNSCC patients. Significance: Circulating PD-L1high exosomes in HNC patients' plasma but not soluble PD-L1 levels associate with disease progression. Clin Cancer Res; 24(4); 896–905. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2Gd6zJe
via IFTTT

Novel In Vitro Cancer Models for Optimizing Anti-EGFR Therapies

Preclinical models, which are able to recapitulate the biology and pathology of the original individual cancer, are needed to better investigate mechanisms of response and resistance to anticancer therapies. In this respect, novel in vitro models for metastatic colorectal cancer could be of high value. Clin Cancer Res; 24(4); 727–9. ©2017 AACR.

See related article by Luraghi et al., p. 807



from Cancer via ola Kala on Inoreader http://ift.tt/2HiHzla
via IFTTT

Olaratumab Exerts Antitumor Activity in Preclinical Models of Pediatric Bone and Soft Tissue Tumors through Inhibition of Platelet-Derived Growth Factor Receptor {alpha}

Purpose: Platelet-derived growth factor receptor α (PDGFRα) is implicated in several adult and pediatric malignancies, where activated signaling in tumor cells and/or cells within the microenvironment drive tumorigenesis and disease progression. Olaratumab (LY3012207/IMC-3G3) is a human mAb that exclusively binds to PDGFRα and recently received accelerated FDA approval and conditional EMA approval for treatment of advanced adult sarcoma patients in combination with doxorubicin. In this study, we investigated olaratumab in preclinical models of pediatric bone and soft tissue tumors.

Experimental Design: PDGFRα expression was evaluated by qPCR and Western blot analysis. Olaratumab was investigated in in vitro cell proliferation and invasion assays using pediatric osteosarcoma and rhabdoid tumor cell lines. In vivo activity of olaratumab was assessed in preclinical mouse models of pediatric osteosarcoma and malignant rhabdoid tumor.

Results: In vitro olaratumab treatment of osteosarcoma and rhabdoid tumor cell lines reduced proliferation and inhibited invasion driven by individual platelet-derived growth factors (PDGFs) or serum. Furthermore, olaratumab delayed primary tumor growth in mouse models of pediatric osteosarcoma and malignant rhabdoid tumor, and this activity was enhanced by combination with either doxorubicin or cisplatin.

Conclusions: Overall, these data indicate that olaratumab, alone and in combination with standard of care, blocks the growth of some preclinical PDGFRα-expressing pediatric bone and soft tissue tumor models. Clin Cancer Res; 24(4); 847–57. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2GgRW7p
via IFTTT

Whole-Exome Sequencing of Cell-Free DNA Reveals Temporo-spatial Heterogeneity and Identifies Treatment-Resistant Clones in Neuroblastoma

Purpose: Neuroblastoma displays important clinical and genetic heterogeneity, with emergence of new mutations at tumor progression.

Experimental Design: To study clonal evolution during treatment and follow-up, an innovative method based on circulating cell-free DNA (cfDNA) analysis by whole-exome sequencing (WES) paired with target sequencing was realized in sequential liquid biopsy samples of 19 neuroblastoma patients.

Results: WES of the primary tumor and cfDNA at diagnosis showed overlap of single-nucleotide variants (SNV) and copy number alterations, with 41% and 93% of all detected alterations common to the primary neuroblastoma and cfDNA. CfDNA WES at a second time point indicated a mean of 22 new SNVs for patients with progressive disease. Relapse-specific alterations included genes of the MAPK pathway and targeted the protein kinase A signaling pathway. Deep coverage target sequencing of intermediate time points during treatment and follow-up identified distinct subclones. For 17 seemingly relapse-specific SNVs detected by cfDNA WES at relapse but not tumor or cfDNA WES at diagnosis, deep coverage target sequencing detected these alterations in minor subclones, with relapse-emerging SNVs targeting genes of neuritogenesis and cell cycle. Furthermore a persisting, resistant clone with concomitant disappearance of other clones was identified by a mutation in the ubiquitin protein ligase HERC2.

Conclusions: Modelization of mutated allele fractions in cfDNA indicated distinct patterns of clonal evolution, with either a minor, treatment-resistant clone expanding to a major clone at relapse, or minor clones collaborating toward tumor progression. Identification of treatment-resistant clones will enable development of more efficient treatment strategies. Clin Cancer Res; 24(4); 939–49. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2HgfaMt
via IFTTT

Sequential, Multiple Assignment, Randomized Trial Designs in Immuno-oncology Research

Clinical trials investigating immune checkpoint inhibitors have led to the approval of anti–CTLA-4 (cytotoxic T-lymphocyte antigen-4), anti–PD-1 (programmed death-1), and anti–PD-L1 (PD-ligand 1) drugs by the FDA for numerous tumor types. In the treatment of metastatic melanoma, combinations of checkpoint inhibitors are more effective than single-agent inhibitors, but combination immunotherapy is associated with increased frequency and severity of toxicity. There are questions about the use of combination immunotherapy or single-agent anti–PD-1 as initial therapy and the number of doses of either approach required to sustain a response. In this article, we describe a novel use of sequential, multiple assignment, randomized trial (SMART) design to evaluate immune checkpoint inhibitors to find treatment regimens that adapt within an individual based on intermediate response and lead to the longest overall survival. We provide a hypothetical example SMART design for BRAF wild-type metastatic melanoma as a framework for investigating immunotherapy treatment regimens. We compare implementing a SMART design to implementing multiple traditional randomized clinical trials. We illustrate the benefits of a SMART over traditional trial designs and acknowledge the complexity of a SMART. SMART designs may be an optimal way to find treatment strategies that yield durable response, longer survival, and lower toxicity. Clin Cancer Res; 24(4); 730–6. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2Gf2KD6
via IFTTT

Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE

Glioblastoma (GBM) is a deadly disease with few effective therapies. Although much has been learned about the molecular characteristics of the disease, this knowledge has not been translated into clinical improvements for patients. At the same time, many new therapies are being developed. Many of these therapies have potential biomarkers to identify responders. The result is an enormous amount of testable clinical questions that must be answered efficiently. The GBM Adaptive Global Innovative Learning Environment (GBM AGILE) is a novel, multi-arm, platform trial designed to address these challenges. It is the result of the collective work of over 130 oncologists, statisticians, pathologists, neurosurgeons, imagers, and translational and basic scientists from around the world. GBM AGILE is composed of two stages. The first stage is a Bayesian adaptively randomized screening stage to identify effective therapies based on impact on overall survival compared with a common control. This stage also finds the population in which the therapy shows the most promise based on clinical indication and biomarker status. Highly effective therapies transition in an inferentially seamless manner in the identified population to a second confirmatory stage. The second stage uses fixed randomization to confirm the findings from the first stage to support registration. Therapeutic arms with biomarkers may be added to the trial over time, while others complete testing. The design of GBM AGILE enables rapid clinical testing of new therapies and biomarkers to speed highly effective therapies to clinical practice. Clin Cancer Res; 24(4); 737–43. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2HhMu5C
via IFTTT

T Cells Expressing Checkpoint Receptor TIGIT Are Enriched in Follicular Lymphoma Tumors and Characterized by Reversible Suppression of T-cell Receptor Signaling

Purpose: T cells infiltrating follicular lymphoma (FL) tumors are considered dysfunctional, yet the optimal target for immune checkpoint blockade is unknown. Characterizing coinhibitory receptor expression patterns and signaling responses in FL T-cell subsets might reveal new therapeutic targets.

Experimental Design: Surface expression of 9 coinhibitory receptors governing T-cell function was characterized in T-cell subsets from FL lymph node tumors and from healthy donor tonsils and peripheral blood samples, using high-dimensional flow cytometry. The results were integrated with T-cell receptor (TCR)-induced signaling and cytokine production. Expression of T-cell immunoglobulin and ITIM domain (TIGIT) ligands was detected by immunohistochemistry.

Results: TIGIT was a frequently expressed coinhibitory receptor in FL, expressed by the majority of CD8 T effector memory cells, which commonly coexpressed exhaustion markers such as PD-1 and CD244. CD8 FL T cells demonstrated highly reduced TCR-induced phosphorylation (p) of ERK and reduced production of IFN, while TCR proximal signaling (p-CD3, p-SLP76) was not affected. The TIGIT ligands CD112 and CD155 were expressed by follicular dendritic cells in the tumor microenvironment. Dysfunctional TCR signaling correlated with TIGIT expression in FL CD8 T cells and could be fully restored upon in vitro culture. The costimulatory receptor CD226 was downregulated in TIGIT+ compared with TIGIT CD8 FL T cells, further skewing the balance toward immunosuppression.

Conclusions: TIGIT blockade is a relevant strategy for improved immunotherapy in FL. A deeper understanding of the interplay between coinhibitory receptors and key T-cell signaling events can further assist in engineering immunotherapeutic regimens to improve clinical outcomes of cancer patients. Clin Cancer Res; 24(4); 870–81. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2Gf8sFe
via IFTTT

A Phase I Clinical Trial of the Poly(ADP-ribose) Polymerase Inhibitor Veliparib and Weekly Topotecan in Patients with Solid Tumors

Purpose: To determine the dose limiting toxicities (DLT), maximum tolerated dose (MTD), and recommended phase II dose (RP2D) of veliparib in combination with weekly topotecan in patients with solid tumors. Correlative studies were included to assess the impact of topotecan and veliparib on poly(ADP-ribose) levels in peripheral blood mononuclear cells, serum pharmacokinetics of both agents, and potential association of germline repair gene mutations with outcome.

Experimental Design: Eligible patients had metastatic nonhematologic malignancies with measurable disease. Using a 3 + 3 design, patients were treated with veliparib orally twice daily on days 1–3, 8–10, and 15–17 and topotecan intravenously on days 2, 9, and 16 every 28 days. Tumor responses were assessed by RECIST.

Results: Of 58 patients enrolled, 51 were evaluable for the primary endpoint. The MTD and RP2D was veliparib 300 mg twice daily on days 1–3, 8–10, and 15–17 along with topotecan 3 mg/m2 on days 2, 9, and 16 of a 28-day cycle. DLTs were grade 4 neutropenia lasting >5 days. The median number of cycles was 2 (1–26). The objective response rate was 10%, with 1 complete and 4 partial responses. Twenty-two patients (42%) had stable disease ranging from 4 to 26 cycles. Patients with germline BRCA1, BRCA2, or RAD51D mutations remained on study longer than those without homologous recombination repair (HRR) gene mutations (median 4 vs. 2 cycles).

Conclusions: Weekly topotecan in combination with veliparib has a manageable safety profile and appears to warrant further investigation. Clin Cancer Res; 24(4); 744–52. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2Hfbf2B
via IFTTT

FAM198B Is Associated with Prolonged Survival and Inhibits Metastasis in Lung Adenocarcinoma via Blockage of ERK-Mediated MMP-1 Expression

Purpose: The comprehensive understanding of mechanisms involved in the tumor metastasis is urgently needed for discovering novel metastasis-related genes for developing effective diagnoses and treatments for lung cancer.

Experimental Design: FAM198B was identified from an isogenic lung cancer metastasis cell model by microarray analysis. To investigate the clinical relevance of FAM198B, the FAM198B expression of 95 Taiwan lung adenocarcinoma patients was analyzed by quantitative real-time PCR and correlated to patients' survivals. The impact of FAM198B on cell invasion, metastasis, and tumor growth was examined by in vitro cellular assays and in vivo mouse models. In addition, the N-glycosylation–defective FAM198B mutants generated by site-directed mutagenesis were used to study protein stability and subcellular localization of FAM198B. Finally, the microarray and pathway analyses were used to elucidate the underlying mechanisms of FAM198B-mediated tumor suppression.

Results: We found that the high expression of FAM198B was associated with favorable survival in Taiwan lung adenocarcinoma patients and in a lung cancer public database. Enforced expression of FAM198B inhibited cell invasion, migration, mobility, proliferation, and anchorage-independent growth, and FAM198B silencing exhibited opposite activities in vitro. FAM198B also attenuated tumor growth and metastasis in vivo. We further identified MMP-1 as a critical downstream target of FAM198B. The FAM198B-mediated MMP-1 downregulation was via inhibition of the phosphorylation of ERK. Interestingly deglycosylation nearly eliminated the metastasis suppression activity of FAM198B due to a decrease of protein stability.

Conclusions: Our results implicate FAM198B as a potential tumor suppressor and to be a prognostic marker in lung adenocarcinoma. Clin Cancer Res; 24(4); 916–26. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2Gd6xB6
via IFTTT

Outcomes of Children and Adolescents with Advanced Hereditary Medullary Thyroid Carcinoma Treated with Vandetanib

Purpose: Vandetanib is well-tolerated in patients with advanced medullary thyroid carcinoma (MTC). Long-term outcomes and mechanisms of MTC progression have not been reported previously.

Experimental Design: We monitored toxicities and disease status in patients taking vandetanib for hereditary, advanced MTC. Tumor samples were analyzed for molecular mechanisms of disease progression.

Results: Seventeen patients [8 male, age 13 (9–17)* years] enrolled; 16 had a RET p.Met918Thr germline mutation. The duration of vandetanib therapy was 6.1 (0.1–9.7+)* years with treatment ongoing in 9 patients. Best response was partial response in 10, stable disease in 6, and progressive disease in one patient. Duration of response was 7.4 (0.6–8.7+)* and 4.9 (0.6–7.8+)* years in patients with PR and SD, respectively. Six patients died 2.0 (0.4–5.7)* years after progression. Median progression-free survival (PFS) was 6.7 years [95% confidence interval (CI): 2.3 years–undefined] and 5-year overall survival (OS) was 88.2% (95% CI: 60.6%–96.9%). Of 16 patients with a RET p.Met918Thr mutation, progression-free survival was 6.7 years (95% CI: 3.1–undefined) and 5-year overall survival was 93.8% (95% CI: 63.2%–99.1%). No patients terminated treatment because of toxicity. DNA sequencing of tissue samples (n = 11) identified an increase in copy number alterations across the genome as a potential mechanism of drug resistance [*median (range)].

Conclusions: This study demonstrates that vandetanib is safe and results in sustained responses in children and adolescents with hereditary MTC. Our preliminary molecular data suggest that an increase in copy number abnormalities may be associated with tumor progression in hereditary MTC patients treated with vandetanib. Clin Cancer Res; 24(4); 753–65. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2HfTEaD
via IFTTT

Merkel Cell Carcinoma Patients Presenting Without a Primary Lesion Have Elevated Markers of Immunity, Higher Tumor Mutation Burden, and Improved Survival

Purpose: Patients presenting with nodal Merkel cell carcinoma without an identifiable (unknown) primary lesion (MCC-UP) are nearly twice as likely to survive compared with similarly staged patients with known primary lesions (MCC-KP). The basis of this previously reported finding is unclear.

Experimental Design: Survival analyses and markers of immunity were evaluated in 123 patients with advanced MCC. Whole-exome sequence data were analyzed from 16 tumors.

Results: As in prior studies, patients with nodal MCC-UP had strikingly improved MCC-specific survival as compared with MCC-KP patients (HR, 0.297; P < 0.001). Surprisingly, patients presenting with distant metastatic MCC-UP also had significantly improved survival (HR, 0.296; P = 0.038). None of the 72 patients with MCC-UP were immunosuppressed as compared to 12 of the 51 (24%) patients with MCC-KP (P < 0.001). Merkel polyomavirus oncoprotein antibody median titer was higher in MCC-UP patients (26,229) than MCC-KP patients (3,492; P < 0.001). In addition, the median number of nonsynonymous exome mutations in MCC-UP tumors (688 mutations) was markedly higher than MCC-KP tumors (10 mutations, P = 0.016).

Conclusions: This is the first study to our knowledge to explore potential underlying immune-mediated mechanisms of MCC-UP presentation. In this cohort, MCC-UP patients were never immune suppressed, had higher oncoprotein antibody titers, and higher tumor mutational burdens. In addition, we show that nodal tumors identified in MCC-UP patients did indeed arise from primary skin lesions as they contained abundant UV-signature mutations. These findings suggest that stronger underlying immunity against MCC contributes to primary lesion elimination and improved survival. Clin Cancer Res; 24(4); 963–71. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2GeIXnl
via IFTTT

Autologous Dendritic Cells Pulsed with Allogeneic Tumor Cell Lysate in Mesothelioma: From Mouse to Human

Purpose: Mesothelioma has been regarded as a nonimmunogenic tumor, which is also shown by the low response rates to treatments targeting the PD-1/PD-L1 axis. Previously, we demonstrated that autologous tumor lysate–pulsed dendritic cell (DC) immunotherapy increased T-cell response toward malignant mesothelioma. However, the use of autologous tumor material hampers implementation in large clinical trials, which might be overcome by using allogeneic tumor cell lines as tumor antigen source. The purpose of this study was to investigate whether allogeneic lysate–pulsed DC immunotherapy is effective in mice and safe in humans.

Experimental Design: First, in two murine mesothelioma models, mice were treated with autologous DCs pulsed with either autologous or allogeneic tumor lysate or injected with PBS (negative control). Survival and tumor-directed T-cell responses of these mice were monitored. Results were taken forward in a first-in-human clinical trial, in which 9 patients were treated with 10, 25, or 50 million DCs per vaccination. DC vaccination consisted of autologous monocyte–derived DCs pulsed with tumor lysate from five mesothelioma cell lines.

Results: In mice, allogeneic lysate–pulsed DC immunotherapy induced tumor-specific T cells and led to an increased survival, to a similar extent as DC immunotherapy with autologous tumor lysate. In the first-in-human clinical trial, no dose-limiting toxicities were established and radiographic responses were observed. Median PFS was 8.8 months [95% confidence interval (CI), 4.1–20.3] and median OS not reached (median follow-up = 22.8 months).

Conclusions: DC immunotherapy with allogeneic tumor lysate is effective in mice and safe and feasible in humans. Clin Cancer Res; 24(4); 766–76. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2HdDqPg
via IFTTT

Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study

Purpose: We hypothesized that mutations in homologous recombination repair (HRR) genes beyond BRCA1 and BRCA2 improve outcomes for ovarian carcinoma patients treated with platinum therapy and would impact the relative benefit of adding prolonged bevacizumab.

Experimental Design: We sequenced DNA from blood and/or neoplasm from 1,195 women enrolled in GOG-0218, a randomized phase III trial in advanced ovarian carcinoma of bevacizumab added to carboplatin and paclitaxel. Defects in HRR were defined as damaging mutations in 16 genes. Proportional hazards models were used to estimate relative hazards for progression-free survival (PFS) and overall survival (OS).

Results: Of 1,195 women with ovarian carcinoma, HRR mutations were identified in 307 (25.7%). Adjusted hazards for progression and death compared with those without mutations were lower for women with non-BRCA HRR mutations [HR = 0.73; 95% confidence interval (CI), 0.57–0.94; P = 0.01 for PFS; HR = 0.67; 95% CI, 0.50–0.90; P = 0.007 for OS] and BRCA1 mutations (HR = 0.80; 95% CI, 0.66–0.97; P = 0.02 for PFS; HR = 0.74; 95% CI, 0.59–0.94; P = 0.01 for OS) and were lowest for BRCA2 mutations (HR = 0.52; 95% CI, 0.40–0.67; P < 0.0001 for PFS; HR = 0.36; 95% CI, 0.25–0.53; P < 0.0001 for OS). A test of interaction showed no difference in the effect of bevacizumab on PFS between cases with and without mutations.

Conclusions: HRR mutations, including non-BRCA genes, significantly prolong PFS and OS in ovarian carcinoma and should be stratified for in clinical trials. The benefit of adding bevacizumab was not significantly modified by mutation status. Clin Cancer Res; 24(4); 777–83. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2GgFzZo
via IFTTT

Honokiol Radiosensitizes Squamous Cell Carcinoma of the Head and Neck by Downregulation of Survivin

Purpose: Previous studies revealed diverging results regarding the role of survivin in squamous cell carcinoma of the head and neck (SCCHN). This study aimed to evaluate the clinical significance of survivin expression in SCCHN; the function of survivin in DNA-damage repair following ionizing radiation therapy (RT) in SCCHN cells; and the potential of honokiol to enhance RT through downregulation of survivin.

Experimental Design: Expression of survivin in SCCHN patient primary tumor tissues (n = 100) was analyzed and correlated with clinical parameters. SCCHN cell lines were used to evaluate the function of survivin and the effects of honokiol on survivin expression in vitro and in vivo.

Results: Overexpression of survivin was significantly associated with lymph nodes' metastatic status (P = 0.025), worse overall survival (OS), and disease-free survival (DFS) in patients receiving RT (n = 65, OS: P = 0.024, DFS: P = 0.006) and in all patients with SCCHN (n = 100, OS: P = 0.002, DFS: P = 0.003). In SCCHN cells, depletion of survivin led to increased DNA damage and cell death following RT, whereas overexpression of survivin increased clonogenic survival. RT induced nuclear accumulation of survivin and its molecular interaction with -H2AX and DNA-PKCs. Survivin specifically bound to DNA DSB sites induced by I-SceI endonuclease. Honokiol (which downregulates survivin expression) in combination with RT significantly augmented cytotoxicity in SCCHN cells with acquired radioresistance and inhibited growth in SCCHN xenograft tumors.

Conclusions: Survivin is a negative prognostic factor and is involved in DNA-damage repair induced by RT. Targeting survivin using honokiol in combination with RT may provide novel therapeutic opportunities. Clin Cancer Res; 24(4); 858–69. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2HfTDDB
via IFTTT

A Polymorphism within the Vitamin D Transporter Gene Predicts Outcome in Metastatic Colorectal Cancer Patients Treated with FOLFIRI/Bevacizumab or FOLFIRI/Cetuximab

Purpose: Vitamin D exerts its inhibitory influence on colon cancer growth by inhibiting Wnt signaling and angiogenesis. We hypothesized that SNPs in genes involved in vitamin D transport, metabolism, and signaling are associated with outcome in metastatic colorectal cancer (mCRC) patients treated with first-line FOLFIRI and bevacizumab.

Experimental Design: 522 mCRC patients enrolled in the FIRE-3 (discovery cohort) and TRIBE (validation set) trials treated with FOLFIRI/bevacizumab were included in this study. 278 patients receiving FOLFIRI and cetuximab (FIRE-3) served as a control cohort. Six SNPs in 6 genes (GC, CYP24A1, CYP27B1, VDR, DKK1, CST5) were analyzed.

Results: In the discovery cohort, AA carriers of the GC rs4588 SNP encoding for the vitamin D–binding protein, and treated with FOLFIRI/bevacizumab had a shorter overall survival (OS) than those harboring any C allele (15.9 vs. 25.1 months) in both univariable (P = 0.001) and multivariable analyses (P = 0.047). This association was confirmed in the validation cohort in multivariable analysis (OS 18.1 vs. 26.2 months, HR, 1.83; P = 0.037). Interestingly, AA carriers in the control set exhibited a longer OS (48.0 vs. 25.2 months, HR, 0.50; P = 0.021). This association was further confirmed in a second validation cohort comprising refractory mCRC patients treated with cetuximab ± irinotecan (PFS 8.7 vs. 3.7 months) in univariable (P = 0.033) and multivariable analyses (P = 0.046).

Conclusions: GC rs4588 SNP might serve as a predictive marker in mCRC patients treated with FOLFIRI/bevacizumab or FOLFIRI/cetuximab. Whereas AA carriers derive a survival benefit with FOLFIRI/cetuximab, treatment with FOLFIRI/bevacizumab is associated with a worse outcome. Clin Cancer Res; 24(4); 784–93. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2Gef6LY
via IFTTT

NKG2D-Dependent Antitumor Effects of Chemotherapy and Radiotherapy against Glioblastoma

Purpose: NKG2D is a potent activating immune cell receptor, and glioma cells express the cognate ligands (NKG2DL). These ligands are inducible by cellular stress and temozolomide (TMZ) or irradiation (IR), the standard treatment of glioblastoma, could affect their expression. However, a role of NKG2DL for the efficacy of TMZ and IR has never been addressed.

Experimental Design: We assessed the effect of TMZ and IR on NKG2DL in vitro and in vivo in a variety of murine and human glioblastoma models, including glioma-initiating cells, and a cohort of paired glioblastoma samples from patients before and after therapy. Functional effects were studied with immune cell assays. The relevance of the NKG2D system for the efficacy of TMZ and IR was assessed in vivo in syngeneic orthotopic glioblastoma models with blocking antibodies and NKG2D knockout mice.

Results: TMZ or IR induced NKG2DL in vitro and in vivo in all glioblastoma models, and glioblastoma patient samples had increased levels of NKG2DL after therapy with TMZ and IR. This enhanced the immunogenicity of glioma cells in a NGK2D-dependent manner, was independent from cytotoxic or growth inhibitory effects, attenuated by O6-methylguanine-DNA-methyltransferase (MGMT), and required the DNA damage response. The survival benefit afforded by TMZ or IR relied on an intact NKG2D system and was decreased upon inhibition of the NKG2D pathway.

Conclusions: The immune system may influence the activity of convential cancer treatments with particular importance of the NKG2D pathway in glioblastoma. Our data provide a rationale to combine NKG2D-based immunotherapies with TMZ and IR. Clin Cancer Res; 24(4); 882–95. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2HfTBvt
via IFTTT

Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies

Purpose: Response to standard oncologic treatment is limited in colorectal cancer. The gene expression–based consensus molecular subtypes (CMS) provide a new paradigm for stratified treatment and drug repurposing; however, drug discovery is currently limited by the lack of translation of CMS to preclinical models.

Experimental Design: We analyzed CMS in primary colorectal cancers, cell lines, and patient-derived xenografts (PDX). For classification of preclinical models, we developed an optimized classifier enriched for cancer cell–intrinsic gene expression signals, and performed high-throughput in vitro drug screening (n = 459 drugs) to analyze subtype-specific drug sensitivities.

Results: The distinct molecular and clinicopathologic characteristics of each CMS group were validated in a single-hospital series of 409 primary colorectal cancers. The new, cancer cell–adapted classifier was found to perform well in primary tumors, and applied to a panel of 148 cell lines and 32 PDXs, these colorectal cancer models were shown to recapitulate the biology of the CMS groups. Drug screening of 33 cell lines demonstrated subtype-dependent response profiles, confirming strong response to EGFR and HER2 inhibitors in the CMS2 epithelial/canonical group, and revealing strong sensitivity to HSP90 inhibitors in cells with the CMS1 microsatellite instability/immune and CMS4 mesenchymal phenotypes. This association was validated in vitro in additional CMS-predicted cell lines. Combination treatment with 5-fluorouracil and luminespib showed potential to alleviate chemoresistance in a CMS4 PDX model, an effect not seen in a chemosensitive CMS2 PDX model.

Conclusions: We provide translation of CMS classification to preclinical models and uncover a potential for targeted treatment repurposing in the chemoresistant CMS4 group. Clin Cancer Res; 24(4); 794–806. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2GfLQUO
via IFTTT

Genome-Wide Association Study Identifies a New Locus at 7q21.13 Associated with Hepatitis B Virus-Related Hepatocellular Carcinoma

Purpose: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. In China, chronic hepatitis B virus (HBV) infection remains the major risk factor for HCC. In this study, we performed a genome-wide association study (GWAS) among Chinese populations to identify novel genetic loci contributing to susceptibility to HBV-related HCC.

Experimental Design: GWAS scan is performed in a collection of 205 HBV-related HCC trios (each trio includes an affected proband and his/her both parents), and 355 chronic HBV carriers with HCC (cases) and 360 chronic HBV carriers without HCC (controls), followed by two rounds of replication studies totally consisting of 3,796 cases and 2,544 controls.

Results: We identified a novel association signal within the CDK14 gene at 7q21.13 (index rs10272859, OR = 1.28, P = 9.46 x 10–10). Furthermore, we observed that the at-risk rs10272859[G] allele was significantly associated with higher mRNA expression levels of CDK14 in liver tissues. Chromosome conformation capture assays in liver cells confirmed that a physical interaction exists between the promoter region of CDK14 and the risk-associated SNPs in strong linkage disequilibrium with the index rs10272859 at 7q21.13. This index rs10272859 also showed significant association with the survival of HCC patients.

Conclusions: Our findings highlight a novel locus at 7q21.13 conferring both susceptibility and prognosis to HBV-related HCC, and suggest the CDK14 gene to be the functional target of the 7q21.13 locus. Clin Cancer Res; 24(4); 906–15. ©2017 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2HdsEZr
via IFTTT

A Molecularly Annotated Model of Patient-Derived Colon Cancer Stem-Like Cells to Assess Genetic and Nongenetic Mechanisms of Resistance to Anti-EGFR Therapy

Purpose: Patient-derived xenografts ("xenopatients") of colorectal cancer metastases have been essential to identify genetic determinants of resistance to the anti-EGFR antibody cetuximab and to explore new therapeutic strategies. From xenopatients, a genetically annotated collection of stem-like cultures ("xenospheres") was generated and characterized for response to targeted therapies.

Experimental Design: Xenospheres underwent exome-sequencing analysis, gene expression profile, and in vitro targeted treatments to assess genetic, biological, and pharmacologic correspondence with xenopatients, and to investigate nongenetic biomarkers of therapeutic resistance. The outcome of EGFR family inhibition was tested in an NRG1-expressing in vivo model.

Results: Xenospheres faithfully retained the genetic make-up of their matched xenopatients over in vitro and in vivo passages. Frequent and rare genetic lesions triggering primary resistance to cetuximab through constitutive activation of the RAS signaling pathway were conserved, as well as the vulnerability to their respective targeted treatments. Xenospheres lacking such alterations (RASwt) were highly sensitive to cetuximab, but were protected by ligands activating the EGFR family, mostly NRG1. Upon reconstitution of NRG1 expression, xenospheres displayed increased tumorigenic potential in vivo and generated tumors completely resistant to cetuximab, and sensitive only to comprehensive EGFR family inhibition.

Conclusions: Xenospheres are a reliable model to identify both genetic and nongenetic mechanisms of response and resistance to targeted therapies in colorectal cancer. In the absence of RAS pathway mutations, NRG1 and other EGFR ligands can play a major role in conferring primary cetuximab resistance, indicating that comprehensive inhibition of the EGFR family is required to achieve a significant therapeutic response. Clin Cancer Res; 24(4); 807–20. ©2017 AACR.

See related commentary by Napolitano and Ciardiello, p. 727



from Cancer via ola Kala on Inoreader http://ift.tt/2Gh3ibR
via IFTTT

Correction: Differential Toxicity in Patients with and without DNA Repair Mutations: Phase I Study of Carboplatin and Talazoparib in Advanced Solid Tumors



http://ift.tt/2HiXlfQ

Clinical Significance of PD-L1+ Exosomes in Plasma of Head and Neck Cancer Patients

Purpose: The microenvironment of head and neck squamous cell carcinomas (HNSCC) is highly immunosuppressive. HNSCCs expressing elevated levels of PD-L1 have especially poor outcome. Exosomes that carry PD-L1 and suppress T-cell functions have been isolated from plasma of patients with HNSCC. The potential contributions of PD-L1+ exosomes to immune suppression and disease activity are evaluated.

Experimental Design: Exosomes isolated from plasma of 40 HNSCC patients by size exclusion chromatography were captured on beads using anti-CD63 Abs, stained for PD-1 and PD-L1 and analyzed by flow cytometry. The percentages and mean fluorescence intensities (MFI) of PD-L1+ and PD-1+ exosome/bead complexes were correlated with the patients' clinicopathologic data. PD-L1high or PD-L1low exosomes were incubated with activated CD69+ human CD8+ T cells ± PD-1 inhibitor. Changes in CD69 expression levels on T cells were measured. Patients' plasma was tested for soluble PD-L1 (sPD-L1) by ELISA.

Results: Levels of PD-L1 carried by exosomes correlated with patients' disease activity, the UICC stage and the lymph node status (P = 0.0008–0.013). In contrast, plasma levels of sPD-L1 or exosome PD-1 levels did not correlate with any clinicopathologic parameters. CD69 expression levels were inhibited (P < 0.03) by coincubation with PD-L1high but not by PD-L1low exosomes. Blocking of PD-L1+ exosome signaling to PD-1+ T cells attenuated immune suppression.

Conclusions: PD-L1 levels on exosomes, but not levels of sPD-L1, associated with disease progression in HNSCC patients. Circulating PD-L1+ exosomes emerge as useful metrics of disease and immune activity in HNSCC patients. Significance: Circulating PD-L1high exosomes in HNC patients' plasma but not soluble PD-L1 levels associate with disease progression. Clin Cancer Res; 24(4); 896–905. ©2017 AACR.



http://ift.tt/2Gd6zJe

Novel In Vitro Cancer Models for Optimizing Anti-EGFR Therapies

Preclinical models, which are able to recapitulate the biology and pathology of the original individual cancer, are needed to better investigate mechanisms of response and resistance to anticancer therapies. In this respect, novel in vitro models for metastatic colorectal cancer could be of high value. Clin Cancer Res; 24(4); 727–9. ©2017 AACR.

See related article by Luraghi et al., p. 807



http://ift.tt/2HiHzla

Olaratumab Exerts Antitumor Activity in Preclinical Models of Pediatric Bone and Soft Tissue Tumors through Inhibition of Platelet-Derived Growth Factor Receptor {alpha}

Purpose: Platelet-derived growth factor receptor α (PDGFRα) is implicated in several adult and pediatric malignancies, where activated signaling in tumor cells and/or cells within the microenvironment drive tumorigenesis and disease progression. Olaratumab (LY3012207/IMC-3G3) is a human mAb that exclusively binds to PDGFRα and recently received accelerated FDA approval and conditional EMA approval for treatment of advanced adult sarcoma patients in combination with doxorubicin. In this study, we investigated olaratumab in preclinical models of pediatric bone and soft tissue tumors.

Experimental Design: PDGFRα expression was evaluated by qPCR and Western blot analysis. Olaratumab was investigated in in vitro cell proliferation and invasion assays using pediatric osteosarcoma and rhabdoid tumor cell lines. In vivo activity of olaratumab was assessed in preclinical mouse models of pediatric osteosarcoma and malignant rhabdoid tumor.

Results: In vitro olaratumab treatment of osteosarcoma and rhabdoid tumor cell lines reduced proliferation and inhibited invasion driven by individual platelet-derived growth factors (PDGFs) or serum. Furthermore, olaratumab delayed primary tumor growth in mouse models of pediatric osteosarcoma and malignant rhabdoid tumor, and this activity was enhanced by combination with either doxorubicin or cisplatin.

Conclusions: Overall, these data indicate that olaratumab, alone and in combination with standard of care, blocks the growth of some preclinical PDGFRα-expressing pediatric bone and soft tissue tumor models. Clin Cancer Res; 24(4); 847–57. ©2017 AACR.



http://ift.tt/2GgRW7p

Whole-Exome Sequencing of Cell-Free DNA Reveals Temporo-spatial Heterogeneity and Identifies Treatment-Resistant Clones in Neuroblastoma

Purpose: Neuroblastoma displays important clinical and genetic heterogeneity, with emergence of new mutations at tumor progression.

Experimental Design: To study clonal evolution during treatment and follow-up, an innovative method based on circulating cell-free DNA (cfDNA) analysis by whole-exome sequencing (WES) paired with target sequencing was realized in sequential liquid biopsy samples of 19 neuroblastoma patients.

Results: WES of the primary tumor and cfDNA at diagnosis showed overlap of single-nucleotide variants (SNV) and copy number alterations, with 41% and 93% of all detected alterations common to the primary neuroblastoma and cfDNA. CfDNA WES at a second time point indicated a mean of 22 new SNVs for patients with progressive disease. Relapse-specific alterations included genes of the MAPK pathway and targeted the protein kinase A signaling pathway. Deep coverage target sequencing of intermediate time points during treatment and follow-up identified distinct subclones. For 17 seemingly relapse-specific SNVs detected by cfDNA WES at relapse but not tumor or cfDNA WES at diagnosis, deep coverage target sequencing detected these alterations in minor subclones, with relapse-emerging SNVs targeting genes of neuritogenesis and cell cycle. Furthermore a persisting, resistant clone with concomitant disappearance of other clones was identified by a mutation in the ubiquitin protein ligase HERC2.

Conclusions: Modelization of mutated allele fractions in cfDNA indicated distinct patterns of clonal evolution, with either a minor, treatment-resistant clone expanding to a major clone at relapse, or minor clones collaborating toward tumor progression. Identification of treatment-resistant clones will enable development of more efficient treatment strategies. Clin Cancer Res; 24(4); 939–49. ©2017 AACR.



http://ift.tt/2HgfaMt

Sequential, Multiple Assignment, Randomized Trial Designs in Immuno-oncology Research

Clinical trials investigating immune checkpoint inhibitors have led to the approval of anti–CTLA-4 (cytotoxic T-lymphocyte antigen-4), anti–PD-1 (programmed death-1), and anti–PD-L1 (PD-ligand 1) drugs by the FDA for numerous tumor types. In the treatment of metastatic melanoma, combinations of checkpoint inhibitors are more effective than single-agent inhibitors, but combination immunotherapy is associated with increased frequency and severity of toxicity. There are questions about the use of combination immunotherapy or single-agent anti–PD-1 as initial therapy and the number of doses of either approach required to sustain a response. In this article, we describe a novel use of sequential, multiple assignment, randomized trial (SMART) design to evaluate immune checkpoint inhibitors to find treatment regimens that adapt within an individual based on intermediate response and lead to the longest overall survival. We provide a hypothetical example SMART design for BRAF wild-type metastatic melanoma as a framework for investigating immunotherapy treatment regimens. We compare implementing a SMART design to implementing multiple traditional randomized clinical trials. We illustrate the benefits of a SMART over traditional trial designs and acknowledge the complexity of a SMART. SMART designs may be an optimal way to find treatment strategies that yield durable response, longer survival, and lower toxicity. Clin Cancer Res; 24(4); 730–6. ©2017 AACR.



http://ift.tt/2Gf2KD6

Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE

Glioblastoma (GBM) is a deadly disease with few effective therapies. Although much has been learned about the molecular characteristics of the disease, this knowledge has not been translated into clinical improvements for patients. At the same time, many new therapies are being developed. Many of these therapies have potential biomarkers to identify responders. The result is an enormous amount of testable clinical questions that must be answered efficiently. The GBM Adaptive Global Innovative Learning Environment (GBM AGILE) is a novel, multi-arm, platform trial designed to address these challenges. It is the result of the collective work of over 130 oncologists, statisticians, pathologists, neurosurgeons, imagers, and translational and basic scientists from around the world. GBM AGILE is composed of two stages. The first stage is a Bayesian adaptively randomized screening stage to identify effective therapies based on impact on overall survival compared with a common control. This stage also finds the population in which the therapy shows the most promise based on clinical indication and biomarker status. Highly effective therapies transition in an inferentially seamless manner in the identified population to a second confirmatory stage. The second stage uses fixed randomization to confirm the findings from the first stage to support registration. Therapeutic arms with biomarkers may be added to the trial over time, while others complete testing. The design of GBM AGILE enables rapid clinical testing of new therapies and biomarkers to speed highly effective therapies to clinical practice. Clin Cancer Res; 24(4); 737–43. ©2017 AACR.



http://ift.tt/2HhMu5C

T Cells Expressing Checkpoint Receptor TIGIT Are Enriched in Follicular Lymphoma Tumors and Characterized by Reversible Suppression of T-cell Receptor Signaling

Purpose: T cells infiltrating follicular lymphoma (FL) tumors are considered dysfunctional, yet the optimal target for immune checkpoint blockade is unknown. Characterizing coinhibitory receptor expression patterns and signaling responses in FL T-cell subsets might reveal new therapeutic targets.

Experimental Design: Surface expression of 9 coinhibitory receptors governing T-cell function was characterized in T-cell subsets from FL lymph node tumors and from healthy donor tonsils and peripheral blood samples, using high-dimensional flow cytometry. The results were integrated with T-cell receptor (TCR)-induced signaling and cytokine production. Expression of T-cell immunoglobulin and ITIM domain (TIGIT) ligands was detected by immunohistochemistry.

Results: TIGIT was a frequently expressed coinhibitory receptor in FL, expressed by the majority of CD8 T effector memory cells, which commonly coexpressed exhaustion markers such as PD-1 and CD244. CD8 FL T cells demonstrated highly reduced TCR-induced phosphorylation (p) of ERK and reduced production of IFN, while TCR proximal signaling (p-CD3, p-SLP76) was not affected. The TIGIT ligands CD112 and CD155 were expressed by follicular dendritic cells in the tumor microenvironment. Dysfunctional TCR signaling correlated with TIGIT expression in FL CD8 T cells and could be fully restored upon in vitro culture. The costimulatory receptor CD226 was downregulated in TIGIT+ compared with TIGIT CD8 FL T cells, further skewing the balance toward immunosuppression.

Conclusions: TIGIT blockade is a relevant strategy for improved immunotherapy in FL. A deeper understanding of the interplay between coinhibitory receptors and key T-cell signaling events can further assist in engineering immunotherapeutic regimens to improve clinical outcomes of cancer patients. Clin Cancer Res; 24(4); 870–81. ©2017 AACR.



http://ift.tt/2Gf8sFe

A Phase I Clinical Trial of the Poly(ADP-ribose) Polymerase Inhibitor Veliparib and Weekly Topotecan in Patients with Solid Tumors

Purpose: To determine the dose limiting toxicities (DLT), maximum tolerated dose (MTD), and recommended phase II dose (RP2D) of veliparib in combination with weekly topotecan in patients with solid tumors. Correlative studies were included to assess the impact of topotecan and veliparib on poly(ADP-ribose) levels in peripheral blood mononuclear cells, serum pharmacokinetics of both agents, and potential association of germline repair gene mutations with outcome.

Experimental Design: Eligible patients had metastatic nonhematologic malignancies with measurable disease. Using a 3 + 3 design, patients were treated with veliparib orally twice daily on days 1–3, 8–10, and 15–17 and topotecan intravenously on days 2, 9, and 16 every 28 days. Tumor responses were assessed by RECIST.

Results: Of 58 patients enrolled, 51 were evaluable for the primary endpoint. The MTD and RP2D was veliparib 300 mg twice daily on days 1–3, 8–10, and 15–17 along with topotecan 3 mg/m2 on days 2, 9, and 16 of a 28-day cycle. DLTs were grade 4 neutropenia lasting >5 days. The median number of cycles was 2 (1–26). The objective response rate was 10%, with 1 complete and 4 partial responses. Twenty-two patients (42%) had stable disease ranging from 4 to 26 cycles. Patients with germline BRCA1, BRCA2, or RAD51D mutations remained on study longer than those without homologous recombination repair (HRR) gene mutations (median 4 vs. 2 cycles).

Conclusions: Weekly topotecan in combination with veliparib has a manageable safety profile and appears to warrant further investigation. Clin Cancer Res; 24(4); 744–52. ©2017 AACR.



http://ift.tt/2Hfbf2B

FAM198B Is Associated with Prolonged Survival and Inhibits Metastasis in Lung Adenocarcinoma via Blockage of ERK-Mediated MMP-1 Expression

Purpose: The comprehensive understanding of mechanisms involved in the tumor metastasis is urgently needed for discovering novel metastasis-related genes for developing effective diagnoses and treatments for lung cancer.

Experimental Design: FAM198B was identified from an isogenic lung cancer metastasis cell model by microarray analysis. To investigate the clinical relevance of FAM198B, the FAM198B expression of 95 Taiwan lung adenocarcinoma patients was analyzed by quantitative real-time PCR and correlated to patients' survivals. The impact of FAM198B on cell invasion, metastasis, and tumor growth was examined by in vitro cellular assays and in vivo mouse models. In addition, the N-glycosylation–defective FAM198B mutants generated by site-directed mutagenesis were used to study protein stability and subcellular localization of FAM198B. Finally, the microarray and pathway analyses were used to elucidate the underlying mechanisms of FAM198B-mediated tumor suppression.

Results: We found that the high expression of FAM198B was associated with favorable survival in Taiwan lung adenocarcinoma patients and in a lung cancer public database. Enforced expression of FAM198B inhibited cell invasion, migration, mobility, proliferation, and anchorage-independent growth, and FAM198B silencing exhibited opposite activities in vitro. FAM198B also attenuated tumor growth and metastasis in vivo. We further identified MMP-1 as a critical downstream target of FAM198B. The FAM198B-mediated MMP-1 downregulation was via inhibition of the phosphorylation of ERK. Interestingly deglycosylation nearly eliminated the metastasis suppression activity of FAM198B due to a decrease of protein stability.

Conclusions: Our results implicate FAM198B as a potential tumor suppressor and to be a prognostic marker in lung adenocarcinoma. Clin Cancer Res; 24(4); 916–26. ©2017 AACR.



http://ift.tt/2Gd6xB6

Outcomes of Children and Adolescents with Advanced Hereditary Medullary Thyroid Carcinoma Treated with Vandetanib

Purpose: Vandetanib is well-tolerated in patients with advanced medullary thyroid carcinoma (MTC). Long-term outcomes and mechanisms of MTC progression have not been reported previously.

Experimental Design: We monitored toxicities and disease status in patients taking vandetanib for hereditary, advanced MTC. Tumor samples were analyzed for molecular mechanisms of disease progression.

Results: Seventeen patients [8 male, age 13 (9–17)* years] enrolled; 16 had a RET p.Met918Thr germline mutation. The duration of vandetanib therapy was 6.1 (0.1–9.7+)* years with treatment ongoing in 9 patients. Best response was partial response in 10, stable disease in 6, and progressive disease in one patient. Duration of response was 7.4 (0.6–8.7+)* and 4.9 (0.6–7.8+)* years in patients with PR and SD, respectively. Six patients died 2.0 (0.4–5.7)* years after progression. Median progression-free survival (PFS) was 6.7 years [95% confidence interval (CI): 2.3 years–undefined] and 5-year overall survival (OS) was 88.2% (95% CI: 60.6%–96.9%). Of 16 patients with a RET p.Met918Thr mutation, progression-free survival was 6.7 years (95% CI: 3.1–undefined) and 5-year overall survival was 93.8% (95% CI: 63.2%–99.1%). No patients terminated treatment because of toxicity. DNA sequencing of tissue samples (n = 11) identified an increase in copy number alterations across the genome as a potential mechanism of drug resistance [*median (range)].

Conclusions: This study demonstrates that vandetanib is safe and results in sustained responses in children and adolescents with hereditary MTC. Our preliminary molecular data suggest that an increase in copy number abnormalities may be associated with tumor progression in hereditary MTC patients treated with vandetanib. Clin Cancer Res; 24(4); 753–65. ©2017 AACR.



http://ift.tt/2HfTEaD

Merkel Cell Carcinoma Patients Presenting Without a Primary Lesion Have Elevated Markers of Immunity, Higher Tumor Mutation Burden, and Improved Survival

Purpose: Patients presenting with nodal Merkel cell carcinoma without an identifiable (unknown) primary lesion (MCC-UP) are nearly twice as likely to survive compared with similarly staged patients with known primary lesions (MCC-KP). The basis of this previously reported finding is unclear.

Experimental Design: Survival analyses and markers of immunity were evaluated in 123 patients with advanced MCC. Whole-exome sequence data were analyzed from 16 tumors.

Results: As in prior studies, patients with nodal MCC-UP had strikingly improved MCC-specific survival as compared with MCC-KP patients (HR, 0.297; P < 0.001). Surprisingly, patients presenting with distant metastatic MCC-UP also had significantly improved survival (HR, 0.296; P = 0.038). None of the 72 patients with MCC-UP were immunosuppressed as compared to 12 of the 51 (24%) patients with MCC-KP (P < 0.001). Merkel polyomavirus oncoprotein antibody median titer was higher in MCC-UP patients (26,229) than MCC-KP patients (3,492; P < 0.001). In addition, the median number of nonsynonymous exome mutations in MCC-UP tumors (688 mutations) was markedly higher than MCC-KP tumors (10 mutations, P = 0.016).

Conclusions: This is the first study to our knowledge to explore potential underlying immune-mediated mechanisms of MCC-UP presentation. In this cohort, MCC-UP patients were never immune suppressed, had higher oncoprotein antibody titers, and higher tumor mutational burdens. In addition, we show that nodal tumors identified in MCC-UP patients did indeed arise from primary skin lesions as they contained abundant UV-signature mutations. These findings suggest that stronger underlying immunity against MCC contributes to primary lesion elimination and improved survival. Clin Cancer Res; 24(4); 963–71. ©2017 AACR.



http://ift.tt/2GeIXnl

Autologous Dendritic Cells Pulsed with Allogeneic Tumor Cell Lysate in Mesothelioma: From Mouse to Human

Purpose: Mesothelioma has been regarded as a nonimmunogenic tumor, which is also shown by the low response rates to treatments targeting the PD-1/PD-L1 axis. Previously, we demonstrated that autologous tumor lysate–pulsed dendritic cell (DC) immunotherapy increased T-cell response toward malignant mesothelioma. However, the use of autologous tumor material hampers implementation in large clinical trials, which might be overcome by using allogeneic tumor cell lines as tumor antigen source. The purpose of this study was to investigate whether allogeneic lysate–pulsed DC immunotherapy is effective in mice and safe in humans.

Experimental Design: First, in two murine mesothelioma models, mice were treated with autologous DCs pulsed with either autologous or allogeneic tumor lysate or injected with PBS (negative control). Survival and tumor-directed T-cell responses of these mice were monitored. Results were taken forward in a first-in-human clinical trial, in which 9 patients were treated with 10, 25, or 50 million DCs per vaccination. DC vaccination consisted of autologous monocyte–derived DCs pulsed with tumor lysate from five mesothelioma cell lines.

Results: In mice, allogeneic lysate–pulsed DC immunotherapy induced tumor-specific T cells and led to an increased survival, to a similar extent as DC immunotherapy with autologous tumor lysate. In the first-in-human clinical trial, no dose-limiting toxicities were established and radiographic responses were observed. Median PFS was 8.8 months [95% confidence interval (CI), 4.1–20.3] and median OS not reached (median follow-up = 22.8 months).

Conclusions: DC immunotherapy with allogeneic tumor lysate is effective in mice and safe and feasible in humans. Clin Cancer Res; 24(4); 766–76. ©2017 AACR.



http://ift.tt/2HdDqPg

Mutations in Homologous Recombination Genes and Outcomes in Ovarian Carcinoma Patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group Study

Purpose: We hypothesized that mutations in homologous recombination repair (HRR) genes beyond BRCA1 and BRCA2 improve outcomes for ovarian carcinoma patients treated with platinum therapy and would impact the relative benefit of adding prolonged bevacizumab.

Experimental Design: We sequenced DNA from blood and/or neoplasm from 1,195 women enrolled in GOG-0218, a randomized phase III trial in advanced ovarian carcinoma of bevacizumab added to carboplatin and paclitaxel. Defects in HRR were defined as damaging mutations in 16 genes. Proportional hazards models were used to estimate relative hazards for progression-free survival (PFS) and overall survival (OS).

Results: Of 1,195 women with ovarian carcinoma, HRR mutations were identified in 307 (25.7%). Adjusted hazards for progression and death compared with those without mutations were lower for women with non-BRCA HRR mutations [HR = 0.73; 95% confidence interval (CI), 0.57–0.94; P = 0.01 for PFS; HR = 0.67; 95% CI, 0.50–0.90; P = 0.007 for OS] and BRCA1 mutations (HR = 0.80; 95% CI, 0.66–0.97; P = 0.02 for PFS; HR = 0.74; 95% CI, 0.59–0.94; P = 0.01 for OS) and were lowest for BRCA2 mutations (HR = 0.52; 95% CI, 0.40–0.67; P < 0.0001 for PFS; HR = 0.36; 95% CI, 0.25–0.53; P < 0.0001 for OS). A test of interaction showed no difference in the effect of bevacizumab on PFS between cases with and without mutations.

Conclusions: HRR mutations, including non-BRCA genes, significantly prolong PFS and OS in ovarian carcinoma and should be stratified for in clinical trials. The benefit of adding bevacizumab was not significantly modified by mutation status. Clin Cancer Res; 24(4); 777–83. ©2017 AACR.



http://ift.tt/2GgFzZo

Honokiol Radiosensitizes Squamous Cell Carcinoma of the Head and Neck by Downregulation of Survivin

Purpose: Previous studies revealed diverging results regarding the role of survivin in squamous cell carcinoma of the head and neck (SCCHN). This study aimed to evaluate the clinical significance of survivin expression in SCCHN; the function of survivin in DNA-damage repair following ionizing radiation therapy (RT) in SCCHN cells; and the potential of honokiol to enhance RT through downregulation of survivin.

Experimental Design: Expression of survivin in SCCHN patient primary tumor tissues (n = 100) was analyzed and correlated with clinical parameters. SCCHN cell lines were used to evaluate the function of survivin and the effects of honokiol on survivin expression in vitro and in vivo.

Results: Overexpression of survivin was significantly associated with lymph nodes' metastatic status (P = 0.025), worse overall survival (OS), and disease-free survival (DFS) in patients receiving RT (n = 65, OS: P = 0.024, DFS: P = 0.006) and in all patients with SCCHN (n = 100, OS: P = 0.002, DFS: P = 0.003). In SCCHN cells, depletion of survivin led to increased DNA damage and cell death following RT, whereas overexpression of survivin increased clonogenic survival. RT induced nuclear accumulation of survivin and its molecular interaction with -H2AX and DNA-PKCs. Survivin specifically bound to DNA DSB sites induced by I-SceI endonuclease. Honokiol (which downregulates survivin expression) in combination with RT significantly augmented cytotoxicity in SCCHN cells with acquired radioresistance and inhibited growth in SCCHN xenograft tumors.

Conclusions: Survivin is a negative prognostic factor and is involved in DNA-damage repair induced by RT. Targeting survivin using honokiol in combination with RT may provide novel therapeutic opportunities. Clin Cancer Res; 24(4); 858–69. ©2017 AACR.



http://ift.tt/2HfTDDB

A Polymorphism within the Vitamin D Transporter Gene Predicts Outcome in Metastatic Colorectal Cancer Patients Treated with FOLFIRI/Bevacizumab or FOLFIRI/Cetuximab

Purpose: Vitamin D exerts its inhibitory influence on colon cancer growth by inhibiting Wnt signaling and angiogenesis. We hypothesized that SNPs in genes involved in vitamin D transport, metabolism, and signaling are associated with outcome in metastatic colorectal cancer (mCRC) patients treated with first-line FOLFIRI and bevacizumab.

Experimental Design: 522 mCRC patients enrolled in the FIRE-3 (discovery cohort) and TRIBE (validation set) trials treated with FOLFIRI/bevacizumab were included in this study. 278 patients receiving FOLFIRI and cetuximab (FIRE-3) served as a control cohort. Six SNPs in 6 genes (GC, CYP24A1, CYP27B1, VDR, DKK1, CST5) were analyzed.

Results: In the discovery cohort, AA carriers of the GC rs4588 SNP encoding for the vitamin D–binding protein, and treated with FOLFIRI/bevacizumab had a shorter overall survival (OS) than those harboring any C allele (15.9 vs. 25.1 months) in both univariable (P = 0.001) and multivariable analyses (P = 0.047). This association was confirmed in the validation cohort in multivariable analysis (OS 18.1 vs. 26.2 months, HR, 1.83; P = 0.037). Interestingly, AA carriers in the control set exhibited a longer OS (48.0 vs. 25.2 months, HR, 0.50; P = 0.021). This association was further confirmed in a second validation cohort comprising refractory mCRC patients treated with cetuximab ± irinotecan (PFS 8.7 vs. 3.7 months) in univariable (P = 0.033) and multivariable analyses (P = 0.046).

Conclusions: GC rs4588 SNP might serve as a predictive marker in mCRC patients treated with FOLFIRI/bevacizumab or FOLFIRI/cetuximab. Whereas AA carriers derive a survival benefit with FOLFIRI/cetuximab, treatment with FOLFIRI/bevacizumab is associated with a worse outcome. Clin Cancer Res; 24(4); 784–93. ©2017 AACR.



http://ift.tt/2Gef6LY

NKG2D-Dependent Antitumor Effects of Chemotherapy and Radiotherapy against Glioblastoma

Purpose: NKG2D is a potent activating immune cell receptor, and glioma cells express the cognate ligands (NKG2DL). These ligands are inducible by cellular stress and temozolomide (TMZ) or irradiation (IR), the standard treatment of glioblastoma, could affect their expression. However, a role of NKG2DL for the efficacy of TMZ and IR has never been addressed.

Experimental Design: We assessed the effect of TMZ and IR on NKG2DL in vitro and in vivo in a variety of murine and human glioblastoma models, including glioma-initiating cells, and a cohort of paired glioblastoma samples from patients before and after therapy. Functional effects were studied with immune cell assays. The relevance of the NKG2D system for the efficacy of TMZ and IR was assessed in vivo in syngeneic orthotopic glioblastoma models with blocking antibodies and NKG2D knockout mice.

Results: TMZ or IR induced NKG2DL in vitro and in vivo in all glioblastoma models, and glioblastoma patient samples had increased levels of NKG2DL after therapy with TMZ and IR. This enhanced the immunogenicity of glioma cells in a NGK2D-dependent manner, was independent from cytotoxic or growth inhibitory effects, attenuated by O6-methylguanine-DNA-methyltransferase (MGMT), and required the DNA damage response. The survival benefit afforded by TMZ or IR relied on an intact NKG2D system and was decreased upon inhibition of the NKG2D pathway.

Conclusions: The immune system may influence the activity of convential cancer treatments with particular importance of the NKG2D pathway in glioblastoma. Our data provide a rationale to combine NKG2D-based immunotherapies with TMZ and IR. Clin Cancer Res; 24(4); 882–95. ©2017 AACR.



http://ift.tt/2HfTBvt

Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies

Purpose: Response to standard oncologic treatment is limited in colorectal cancer. The gene expression–based consensus molecular subtypes (CMS) provide a new paradigm for stratified treatment and drug repurposing; however, drug discovery is currently limited by the lack of translation of CMS to preclinical models.

Experimental Design: We analyzed CMS in primary colorectal cancers, cell lines, and patient-derived xenografts (PDX). For classification of preclinical models, we developed an optimized classifier enriched for cancer cell–intrinsic gene expression signals, and performed high-throughput in vitro drug screening (n = 459 drugs) to analyze subtype-specific drug sensitivities.

Results: The distinct molecular and clinicopathologic characteristics of each CMS group were validated in a single-hospital series of 409 primary colorectal cancers. The new, cancer cell–adapted classifier was found to perform well in primary tumors, and applied to a panel of 148 cell lines and 32 PDXs, these colorectal cancer models were shown to recapitulate the biology of the CMS groups. Drug screening of 33 cell lines demonstrated subtype-dependent response profiles, confirming strong response to EGFR and HER2 inhibitors in the CMS2 epithelial/canonical group, and revealing strong sensitivity to HSP90 inhibitors in cells with the CMS1 microsatellite instability/immune and CMS4 mesenchymal phenotypes. This association was validated in vitro in additional CMS-predicted cell lines. Combination treatment with 5-fluorouracil and luminespib showed potential to alleviate chemoresistance in a CMS4 PDX model, an effect not seen in a chemosensitive CMS2 PDX model.

Conclusions: We provide translation of CMS classification to preclinical models and uncover a potential for targeted treatment repurposing in the chemoresistant CMS4 group. Clin Cancer Res; 24(4); 794–806. ©2017 AACR.



http://ift.tt/2GfLQUO

Genome-Wide Association Study Identifies a New Locus at 7q21.13 Associated with Hepatitis B Virus-Related Hepatocellular Carcinoma

Purpose: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. In China, chronic hepatitis B virus (HBV) infection remains the major risk factor for HCC. In this study, we performed a genome-wide association study (GWAS) among Chinese populations to identify novel genetic loci contributing to susceptibility to HBV-related HCC.

Experimental Design: GWAS scan is performed in a collection of 205 HBV-related HCC trios (each trio includes an affected proband and his/her both parents), and 355 chronic HBV carriers with HCC (cases) and 360 chronic HBV carriers without HCC (controls), followed by two rounds of replication studies totally consisting of 3,796 cases and 2,544 controls.

Results: We identified a novel association signal within the CDK14 gene at 7q21.13 (index rs10272859, OR = 1.28, P = 9.46 x 10–10). Furthermore, we observed that the at-risk rs10272859[G] allele was significantly associated with higher mRNA expression levels of CDK14 in liver tissues. Chromosome conformation capture assays in liver cells confirmed that a physical interaction exists between the promoter region of CDK14 and the risk-associated SNPs in strong linkage disequilibrium with the index rs10272859 at 7q21.13. This index rs10272859 also showed significant association with the survival of HCC patients.

Conclusions: Our findings highlight a novel locus at 7q21.13 conferring both susceptibility and prognosis to HBV-related HCC, and suggest the CDK14 gene to be the functional target of the 7q21.13 locus. Clin Cancer Res; 24(4); 906–15. ©2017 AACR.



http://ift.tt/2HdsEZr

A Molecularly Annotated Model of Patient-Derived Colon Cancer Stem-Like Cells to Assess Genetic and Nongenetic Mechanisms of Resistance to Anti-EGFR Therapy

Purpose: Patient-derived xenografts ("xenopatients") of colorectal cancer metastases have been essential to identify genetic determinants of resistance to the anti-EGFR antibody cetuximab and to explore new therapeutic strategies. From xenopatients, a genetically annotated collection of stem-like cultures ("xenospheres") was generated and characterized for response to targeted therapies.

Experimental Design: Xenospheres underwent exome-sequencing analysis, gene expression profile, and in vitro targeted treatments to assess genetic, biological, and pharmacologic correspondence with xenopatients, and to investigate nongenetic biomarkers of therapeutic resistance. The outcome of EGFR family inhibition was tested in an NRG1-expressing in vivo model.

Results: Xenospheres faithfully retained the genetic make-up of their matched xenopatients over in vitro and in vivo passages. Frequent and rare genetic lesions triggering primary resistance to cetuximab through constitutive activation of the RAS signaling pathway were conserved, as well as the vulnerability to their respective targeted treatments. Xenospheres lacking such alterations (RASwt) were highly sensitive to cetuximab, but were protected by ligands activating the EGFR family, mostly NRG1. Upon reconstitution of NRG1 expression, xenospheres displayed increased tumorigenic potential in vivo and generated tumors completely resistant to cetuximab, and sensitive only to comprehensive EGFR family inhibition.

Conclusions: Xenospheres are a reliable model to identify both genetic and nongenetic mechanisms of response and resistance to targeted therapies in colorectal cancer. In the absence of RAS pathway mutations, NRG1 and other EGFR ligands can play a major role in conferring primary cetuximab resistance, indicating that comprehensive inhibition of the EGFR family is required to achieve a significant therapeutic response. Clin Cancer Res; 24(4); 807–20. ©2017 AACR.

See related commentary by Napolitano and Ciardiello, p. 727



http://ift.tt/2Gh3ibR

LNMICC Promotes Nodal Metastasis of Cervical Cancer by Reprogramming Fatty Acid Metabolism

Cancer spread to lymph nodes predicts poor survival but underlying mechanisms remain little understood. In this study, we show that overexpression of the long noncoding RNA LNMICC associates with lymph node metastasis of primary cervical cancer, where it serves as an independent high-risk factor in patient survival. Functional investigations demonstrated that LNMICC promoted lymph node metastasis by reprogramming fatty acid metabolism, by recruiting the nuclear factor NPM1 to the promoter of the fatty acid binding protein FABP5. We also found that the prometastatic effects of LNMICC were directly targeted and suppressed by miR-190. Our results establish a new mechanism of lymph node metastasis and highlight LNMICC as a candidate prognostic biomarker and therapeutic target in cervical cancer.Significance: These results establish the role of a novel long noncoding RNA in lymph node metastasis, with implications as a candidate prognostic biomarker and therapeutic target in cervical cancer. Cancer Res; 78(4); 877–90. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2C3PXWa
via IFTTT

miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma

Melanoma treatment with the BRAF V600E inhibitor vemurafenib provides therapeutic benefits but the common emergence of drug resistance remains a challenge. We generated A375 melanoma cells resistant to vemurafenib with the goal of investigating changes in miRNA expression patterns that might contribute to resistance. Increased expression of miR-204-5p and miR-211-5p occurring in vemurafenib-resistant cells was determined to impact vemurafenib response. Their expression was rapidly affected by vemurafenib treatment through RNA stabilization. Similar effects were elicited by MEK and ERK inhibitors but not AKT or Rac inhibitors. Ectopic expression of both miRNA in drug-naïve human melanoma cells was sufficient to confer vemurafenib resistance and more robust tumor growth in vivo. Conversely, silencing their expression in resistant cells inhibited cell growth. Joint overexpression of miR-204-5p and miR-211-5p durably stimulated Ras and MAPK upregulation after vemurafenib exposure. Overall, our findings show how upregulation of miR-204-5p and miR-211-5p following vemurafenib treatment enables the emergence of resistance, with potential implications for mechanism-based strategies to improve vemurafenib responses.Significance: Identification of miRNAs that enable resistance to BRAF inhibitors in melanoma suggests a mechanism-based strategy to limit resistance and improve clinical outcomes. Cancer Res; 78(4); 1017–30. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2EE4x7R
via IFTTT

Correction: Regulatory Aspects of Optical Methods and Exogenous Targets for Cancer Detection



from Cancer via ola Kala on Inoreader http://ift.tt/2Buuzs1
via IFTTT

Perspective on Circulating Tumor Cell Clusters: Why It Takes a Village to Metastasize

Circulating tumor cell (CTC) clusters may represent one of the key mechanisms initiating the metastasis process. However, the series of pathophysiologic events by which CTC clusters originate, enter the circulation, and reach the distant sites remain to be identified. The cellular and molecular mechanisms that provide survival advantage for CTC clusters during the transit in the blood stream are also still largely unknown. Understanding the biology of CTC clusters is critical to assess this unified scheme employed by cancer and to device strategies to overcome key pathways responsible for their improved metastatic potential. CTC clusters remain an underdeveloped area of research begging the attention of multidisciplinary cancer research teams. Here, we provide insight on existing preclinical evidence on the potential mechanisms leading to CTC cluster formation and dissemination and on processes that may offer survival advantage. We also offer our perspective on future directions to delineate the role of CTC clusters in metastatic cascade and discuss their clinical significance. Cancer Res; 78(4); 845–52. ©2018 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2EE4uZJ
via IFTTT

A20/TNFAIP3 Regulates the DNA Damage Response and Mediates Tumor Cell Resistance to DNA-Damaging Therapy

A competent DNA damage response (DDR) helps prevent cancer, but once cancer has arisen, DDR can blunt the efficacy of chemotherapy and radiotherapy that cause lethal DNA breakage in cancer cells. Thus, blocking DDR may improve the efficacy of these modalities. Here, we report a new DDR mechanism that interfaces with inflammatory signaling and might be blocked to improve anticancer outcomes. Specifically, we report that the ubiquitin-editing enzyme A20/TNFAIP3 binds and inhibits the E3 ubiquitin ligase RNF168, which is responsible for regulating histone H2A turnover critical for proper DNA repair. A20 induced after DNA damage disrupted RNF168–H2A interaction in a manner independent of its enzymatic activity. Furthermore, it inhibited accumulation of RNF168 and downstream repair protein 53BP1 during DNA repair. A20 was also required for disassembly of RNF168 and 53BP1 from damage sites after repair. Conversely, A20 deletion increased the efficiency of error-prone nonhomologous DNA end-joining and decreased error-free DNA homologous recombination, destablizing the genome and increasing sensitivity to DNA damage. In clinical specimens of invasive breast carcinoma, A20 was widely overexpressed, consistent with its candidacy as a therapeutic target. Taken together, our findings suggest that A20 is critical for proper functioning of the DDR in cancer cells and it establishes a new link between this NFκB-regulated ubiquitin-editing enzyme and the DDR pathway.Significance: This study identifies the ubiquitin-editing enzyme A20 as a key factor in mediating cancer cell resistance to DNA-damaging therapy, with implications for blocking its function to leverage the efficacy of chemotherapy and radiotherapy. Cancer Res; 78(4); 1069–82. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2stB37N
via IFTTT

Single-Cell RNA-seq Reveals a Subpopulation of Prostate Cancer Cells with Enhanced Cell-Cycle-Related Transcription and Attenuated Androgen Response

Increasing evidence suggests the presence of minor cell subpopulations in prostate cancer that are androgen independent and poised for selection as dominant clones after androgen deprivation therapy. In this study, we investigated this phenomenon by stratifying cell subpopulations based on transcriptome profiling of 144 single LNCaP prostate cancer cells treated or untreated with androgen after cell-cycle synchronization. Model-based clustering of 397 differentially expressed genes identified eight potential subpopulations of LNCaP cells, revealing a previously unappreciable level of cellular heterogeneity to androgen stimulation. One subpopulation displayed stem-like features with a slower cell doubling rate, increased sphere formation capability, and resistance to G2–M arrest induced by a mitosis inhibitor. Advanced growth of this subpopulation was associated with enhanced expression of 10 cell-cycle–related genes (CCNB2, DLGAP5, CENPF, CENPE, MKI67, PTTG1, CDC20, PLK1, HMMR, and CCNB1) and decreased dependence upon androgen receptor signaling. In silico analysis of RNA-seq data from The Cancer Genome Atlas further demonstrated that concordant upregulation of these genes was linked to recurrent prostate cancers. Analysis of receiver operating characteristic curves implicates aberrant expression of these genes and could be useful for early identification of tumors that subsequently develop biochemical recurrence. Moreover, this single-cell approach provides a better understanding of how prostate cancer cells respond heterogeneously to androgen deprivation therapies and reveals characteristics of subpopulations resistant to this treatment.Significance: Illustrating the challenge in treating cancers with targeted drugs, which by selecting for drug resistance can drive metastatic progression, this study characterized the plasticity and heterogeneity of prostate cancer cells with regard to androgen dependence, defining the character or minor subpopulations of androgen-independent cells that are poised for clonal selection after androgen-deprivation therapy. Cancer Res; 78(4); 853–64. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2EGEkoZ
via IFTTT

Adaptive and Reversible Resistance to Kras Inhibition in Pancreatic Cancer Cells

Activating mutations in KRAS are the hallmark genetic alterations in pancreatic ductal adenocarcinoma (PDAC) and the key drivers of its initiation and progression. Longstanding efforts to develop novel KRAS inhibitors have been based on the assumption that PDAC cells are addicted to activated KRAS, but this assumption remains controversial. In this study, we analyzed the requirement of endogenous Kras to maintain survival of murine PDAC cells, using an inducible shRNA-based system that enables temporal control of Kras expression. We found that the majority of murine PDAC cells analyzed tolerated acute and sustained Kras silencing by adapting to a reversible cell state characterized by differences in cell morphology, proliferative kinetics, and tumor-initiating capacity. While we observed no significant mutational or transcriptional changes in the Kras-inhibited state, global phosphoproteomic profiling revealed significant alterations in cell signaling, including increased phosphorylation of focal adhesion pathway components. Accordingly, Kras-inhibited cells displayed prominent focal adhesion plaque structures, enhanced adherence properties, and increased dependency on adhesion for viability in vitro. Overall, our results call into question the degree to which PDAC cells are addicted to activated KRAS, by illustrating adaptive nongenetic and nontranscriptional mechanisms of resistance to Kras blockade. However, by identifying these mechanisms, our work also provides mechanistic directions to develop combination strategies that can help enforce the efficacy of KRAS inhibitors.Significance: These results call into question the degree to which pancreatic cancers are addicted to KRAS by illustrating adaptive nongenetic and nontranscriptional mechanisms of resistance to Kras blockade, with implications for the development of KRAS inhibitors for PDAC treatment. Cancer Res; 78(4); 985–1002. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2syBOw8
via IFTTT

Integrated Molecular Characterization of the Lethal Pediatric Cancer Pancreatoblastoma

Pancreatoblastoma is a rare pediatric pancreatic malignancy for which the molecular pathogenesis is not understood. In this study, we report the findings of an integrated multiomics study of whole-exome and RNA sequencing as well as genome-wide copy number and methylation analyses of ten pancreatoblastoma cases. The pancreatoblastoma genome was characterized by a high frequency of aberrant activation of the Wnt signaling pathway, either via somatic mutations of CTNNB1 (90%) and copy-neutral loss of heterozygosity (CN-LOH) of APC (10%). In addition, imprinting dysregulation of IGF2 as a consequence of CN-LOH (80%), gain of paternal allele (10%), and gain of methylation (10%) was universally detected. At the transcriptome level, pancreatoblastoma exhibited an expression profile characteristic of early pancreas progenitor-like cells along with upregulation of the R-spondin/LGR5/RNF43 module. Our results offer a comprehensive description of the molecular basis for pancreatoblastoma and highlight rational therapeutic targets for its treatment.Significance: Molecular genetic analysis of a rare untreatable pediatric tumor reveals Wnt/IGF2 aberrations and features of early pancreas progenitor-like cells, suggesting cellular origins and rational strategies for therapeutic targeting. Cancer Res; 78(4); 865–76. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2EFY7F1
via IFTTT

ER Stress Signaling Promotes the Survival of Cancer “Persister Cells” Tolerant to EGFR Tyrosine Kinase Inhibitors

An increasingly recognized component of resistance to tyrosine kinase inhibitors (TKI) involves persistence of a drug-tolerant subpopulation of cancer cells that survive despite effective eradication of the majority of the cell population. Multiple groups have demonstrated that these drug-tolerant persister cells undergo transcriptional adaptation via an epigenetic state change that promotes cell survival. Because this mode of TKI drug tolerance appears to involve transcriptional addiction to specific genes and pathways, we hypothesized that systematic functional screening of EGFR TKI/transcriptional inhibitor combination therapy would yield important mechanistic insights and alternative drug escape pathways. We therefore performed a genome-wide CRISPR/Cas9 enhancer/suppressor screen in EGFR-dependent lung cancer PC9 cells treated with erlotinib + THZ1 (CDK7/12 inhibitor) combination therapy, a combination previously shown to suppress drug-tolerant cells in this setting. As expected, suppression of multiple genes associated with transcriptional complexes (EP300, CREBBP, and MED1) enhanced erlotinib/THZ1 synergy. Unexpectedly, we uncovered nearly every component of the recently described ufmylation pathway in the synergy suppressor group. Loss of ufmylation did not affect canonical downstream EGFR signaling. Instead, absence of this pathway triggered a protective unfolded protein response associated with STING upregulation, promoting protumorigenic inflammatory signaling but also unique dependence on Bcl-xL. These data reveal that dysregulation of ufmylation and ER stress comprise a previously unrecognized TKI drug tolerance pathway that engages survival signaling, with potentially important therapeutic implications.Significance: These findings reveal a novel function of the recently described ufmylation pathway, an ER stress survival signaling in drug-tolerant persister cells, which has important biological and therapeutic implications. Cancer Res; 78(4); 1044–57. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2suXZDH
via IFTTT

Targeting CDK6 and BCL2 Exploits the “MYB Addiction” of Ph+ Acute Lymphoblastic Leukemia

Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) is currently treated with BCR-ABL1 tyrosine kinase inhibitors (TKI) in combination with chemotherapy. However, most patients develop resistance to TKI through BCR-ABL1–dependent and –independent mechanisms. Newly developed TKI can target Ph+ ALL cells with BCR-ABL1–dependent resistance; however, overcoming BCR-ABL1–independent mechanisms of resistance remains challenging because transcription factors, which are difficult to inhibit, are often involved. We show here that (i) the growth of Ph+ ALL cell lines and primary cells is highly dependent on MYB-mediated transcriptional upregulation of CDK6, cyclin D3, and BCL2, and (ii) restoring their expression in MYB-silenced Ph+ ALL cells rescues their impaired proliferation and survival. Levels of MYB and CDK6 were highly correlated in adult Ph+ ALL (P = 0.00008). Moreover, Ph+ ALL cells exhibited a specific requirement for CDK6 but not CDK4 expression, most likely because, in these cells, CDK6 was predominantly localized in the nucleus, whereas CDK4 was almost exclusively cytoplasmic. Consistent with their essential role in Ph+ ALL, pharmacologic inhibition of CDK6 and BCL2 markedly suppressed proliferation, colony formation, and survival of Ph+ ALL cells ex vivo and in mice. In summary, these findings provide a proof-of-principle, rational strategy to target the MYB "addiction" of Ph+ ALL.Significance: MYB blockade can suppress Philadelphia chromosome-positive leukemia in mice, suggesting that this therapeutic strategy may be useful in patients who develop resistance to imatinib and other TKIs used to treat this disease. Cancer Res; 78(4); 1097–109. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2stAZVB
via IFTTT

Oncogenic RAS-Induced Perinuclear Signaling Complexes Requiring KSR1 Regulate Signal Transmission to Downstream Targets

The precise characteristics that distinguish normal and oncogenic RAS signaling remain obscure. Here, we show that oncogenic RAS and BRAF induce perinuclear relocalization of several RAS pathway proteins, including the kinases CK2 and p-ERK1/2 and the signaling scaffold KSR1. This spatial reorganization requires endocytosis, the kinase activities of MEK-ERK and CK2, and the presence of KSR1. CK2α colocalizes with KSR1 and Rab11, a marker of recycling endosomes, whereas p-ERK associates predominantly with a distinct KSR1-positive endosomal population. Notably, these perinuclear signaling complexes (PSC) are present in tumor cell lines, mouse lung tumors, and mouse embryonic fibroblasts undergoing RAS-induced senescence. PSCs are also transiently induced by growth factors (GF) in nontransformed cells with delayed kinetics (4–6 hours), establishing a novel late phase of GF signaling that appears to be constitutively activated in tumor cells. PSCs provide an essential platform for RAS-induced phosphorylation and activation of the prosenescence transcription factor C/EBPβ in primary MEFs undergoing senescence. Conversely, in tumor cells, C/EBPβ activation is suppressed by 3′UTR-mediated localization of Cebpb transcripts to a peripheral cytoplasmic domain distinct from the PSC region. Collectively, our findings indicate that sustained PSC formation is a critical feature of oncogenic RAS/BRAF signaling in cancer cells that controls signal transmission to downstream targets by regulating selective access of effector kinases to substrates such as C/EBPβ.Significance: In addressing the long-standing question of the difference between normal and oncogenic RAS pathway signaling, this study shows that oncogenic RAS specifically triggers constitutive endocytosis-dependent movement of effector kinases to a perinuclear region, thereby creating connections to unique downstream targets such as the core prosenescence and the inflammatory regulatory transcription factor C/EBPβ. Cancer Res; 78(4); 891–908. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2EHpbUt
via IFTTT

Highlights from Recent Cancer Literature



from Cancer via ola Kala on Inoreader http://ift.tt/2stenV7
via IFTTT

LIF Drives Neural Remodeling in Pancreatic Cancer and Offers a New Candidate Biomarker

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive stroma and pathogenic modifications to the peripheral nervous system that elevate metastatic capacity. In this study, we show that the IL6-related stem cell–promoting factor LIF supports PDAC-associated neural remodeling (PANR). LIF was overexpressed in tumor tissue compared with healthy pancreas, but its receptors LIFR and gp130 were expressed only in intratumoral nerves. Cancer cells and stromal cells in PDAC tissues both expressed LIF, but only stromal cells could secrete it. Biological investigations showed that LIF promoted the differentiation of glial nerve sheath Schwann cells and induced their migration by activating JAK/STAT3/AKT signaling. LIF also induced neuronal plasticity in dorsal root ganglia neurons by increasing the number of neurites and the soma area. Notably, injection of LIF-blocking antibody into PDAC-bearing mice reduced intratumoral nerve density, supporting a critical role for LIF function in PANR. In serum from human PDAC patients and mouse models of PDAC, we found that LIF titers positively correlated with intratumoral nerve density. Taken together, our findings suggest LIF as a candidate serum biomarker and diagnostic tool and a possible therapeutic target for limiting the impact of PANR in PDAC pathophysiology and metastatic progression.Significance: This study suggests a target to limit neural remodeling in pancreatic cancer, which contributes to poorer quality of life and heightened metastatic progression in patients. Cancer Res; 78(4); 909–21. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2C14G4g
via IFTTT

A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment

Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell–specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell–based therapies may heighten therapeutic benefits by augmenting NK cell–mediated antitumor immunity.Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003–16. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2BvXMTB
via IFTTT

Amplification of Oncolytic Vaccinia Virus Widespread Tumor Cell Killing by Sunitinib through Multiple Mechanisms

Oncolytic viruses pose many questions in their use in cancer therapy. In this study, we assessed the potential of mpJX-594 (mouse-prototype JX-594), a replication-competent vaccinia virus administered by intravenous injection, to target the tumor vasculature, produce immune activation and tumor cell killing more widespread than the infection, and suppress invasion and metastasis. These actions were examined in RIP-Tag2 transgenic mice with pancreatic neuroendocrine tumors that developed spontaneously and progressed as in humans. mpJX-594 initially infected tumor vascular endothelial cells, leading to vascular pruning and prolonged leakage in tumors but not in normal organs; parallel effects were observed in U87 gliomas. Viral infection spread to tumor cells, where tumor cell killing was much more widespread than the infection. Widespread tumor cell killing at 5 days was prevented by depletion of CD8+ T lymphocytes and did not require GM-CSF, as mpJX-594 variants that expressed human, mouse, or no GM-CSF produced equivalent amounts of killing. The antivascular, antitumor, and antimetastatic effects of mpJX-594 were amplified by concurrent or sequential administration of sunitinib, a multitargeted receptor tyrosine kinase inhibitor. These effects were not mimicked by selective inhibition of VEGFR2 despite equivalent vascular pruning, but were accompanied by suppression of regulatory T cells and greater influx of activated CD8+ T cells. Together, our results showed that mpJX-594 targets tumor blood vessels, spreads secondarily to tumor cells, and produces widespread CD8+ T-cell–dependent tumor cell killing in primary tumors and metastases, and that these effects can be amplified by coadministration of sunitinib.Significance: These findings reveal multiple unrecognized features of the antitumor properties of oncolytic vaccinia viruses, all of which can be amplified by the multitargeted kinase inhibitor sunitinib. Cancer Res; 78(4); 922–37. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2BZxIRx
via IFTTT

NKG2D-Based CAR T Cells and Radiotherapy Exert Synergistic Efficacy in Glioblastoma

Chimeric antigen receptor (CAR) T-cell therapy is an emerging immunotherapy against several malignancies including glioblastoma, the most common and most aggressive malignant primary brain tumor in adults. The challenges in solid tumor immunotherapy comprise heterogenously expressed tumor target antigens and restricted trafficking of CAR T cells to and impaired long-term persistence at the tumor site, as well as the unaddressed integration of CAR T-cell therapy into conventional anticancer treatments. We addressed these questions using a NKG2D-based chimeric antigen receptor construct (chNKG2D) in fully immunocompetent orthotopic glioblastoma mouse models. ChNKG2D T cells demonstrated high IFNγ production and cytolytic activity in vitro. Upon systemic administration in vivo, chNKG2D T cells migrated to the tumor site in the brain, did not induce adverse events, prolonged survival, and cured a fraction of glioma-bearing mice. Surviving mice were protected long-term against tumor rechallenge. Mechanistically, this was not solely the result of a classical immune memory response, but rather involved local persistence of chNKG2D T cells. A subtherapeutic dose of local radiotherapy in combination with chNKG2D T-cell treatment resulted in synergistic activity in two independent syngeneic mouse glioma models by promoting migration of CAR T cells to the tumor site and increased effector functions. We thus provide preclinical proof-of-concept of NKG2D CAR T-cell activity in mouse glioma models and demonstrate efficacy, long-term persistence, and synergistic activity in combination with radiotherapy, providing a rationale to translate this immunotherapeutic strategy to human glioma patients.Significance: These findings provide evidence for synergy of conventional anticancer therapy and CAR T cells and heralds future studies for other treatment combinations. Cancer Res; 78(4); 1031–43. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2Bwvs3x
via IFTTT

LSD1 Stimulates Cancer-Associated Fibroblasts to Drive Notch3-Dependent Self-Renewal of Liver Cancer Stem-like Cells

Cancer stem-like cells (CSC) in hepatocellular carcinoma (HCC) are thought to mediate therapeutic resistance and poor survival outcomes, but their intrinsic and extrinsic control is not well understood. In this study, we found that the chromatin modification factor LSD1 is highly expressed in HCC CSC where it decreases during differentiation. LSD1 was responsible for maintaining CSC self-renewal and tumorigenicity in HCC, and its overexpression was sufficient to drive self-renewal of non-CSC. Levels of acetylated LSD1 were low in CSC with high LSD1 activity, and these CSC were capable of self-renewal. Notch signaling activated LSD1 through induction of the sirtuin SIRT1, leading to deacetylation and activation of LSD1 and CSC self-renewal. Notably, we found that LSD1 expression was increased in cancer-associated fibroblasts (CAF) as an upstream driver of Notch3-mediated CSC self-renewal. In clinical specimens of HCC, the presence of CAF, LSD1, and Notch3 strongly associated with poor patient survival. Overall, our results reveal that CAF-induced expression of Notch3 is responsible for LSD1 activation in CSC, driving their self-renewal in HCC.Significance: These seminal findings illuminate a complex pathway in the tissue microenvironment of liver cancer, which is responsible for orchestrating the self-renewal of stem-like cancer cells, with potential implications to improve therapy and limit relapses. Cancer Res; 78(4); 938–49. ©2017 AACR.

from Cancer via ola Kala on Inoreader http://ift.tt/2C3PUts
via IFTTT