Πέμπτη 1 Δεκεμβρίου 2016

Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth

Ibrutinib is a potent, small-molecule Bruton tyrosine kinase (BTK) inhibitor developed for the treatment of B-cell malignancies. Ibrutinib covalently binds to Cys481 in the ATP-binding domain of BTK. This cysteine residue is conserved among 9 other tyrosine kinases, including HER2 and EGFR, which can be targeted. Screening large panels of cell lines demonstrated that ibrutinib was growth inhibitory against some solid tumor cells, including those inhibited by other HER2/EGFR inhibitors. Among sensitive cell lines, breast cancer lines with HER2 overexpression were most potently inhibited by ibrutinib (<100 nmol/L); in addition, the IC50s were lower than that of lapatinib and dacomitinib. Inhibition of cell growth by ibrutinib coincided with downregulation of phosphorylation on HER2 and EGFR and their downstream targets, AKT and ERK. Irreversible inhibition of HER2 and EGFR in breast cancer cells was established after 30-minute incubation above 100 nmol/L or following 2-hour incubation at lower concentrations. Furthermore, ibrutinib inhibited recombinant HER2 and EGFR activity that was resistant to dialysis and rapid dilution, suggesting an irreversible interaction. The dual activity toward TEC family (BTK and ITK) and ERBB family kinases was unique to ibrutinib, as ERBB inhibitors do not inhibit or covalently bind BTK or ITK. Xenograft studies with HER2+ MDA-MB-453 and BT-474 cells in mice in conjunction with determination of pharmacokinetics demonstrated significant exposure-dependent inhibition of growth and key signaling molecules at levels that are clinically achievable. Ibrutinib's unique dual spectrum of activity against both TEC family and ERBB kinases suggests broader applications of ibrutinib in oncology. Mol Cancer Ther; 15(12); 2835–44. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2fYNOir
via IFTTT

Cell Panel Profiling Reveals Conserved Therapeutic Clusters and Differentiates the Mechanism of Action of Different PI3K/mTOR, Aurora Kinase and EZH2 Inhibitors

Cancer cell line panels are important tools to characterize the in vitro activity of new investigational drugs. Here, we present the inhibition profiles of 122 anticancer agents in proliferation assays with 44 or 66 genetically characterized cancer cell lines from diverse tumor tissues (Oncolines). The library includes 29 cytotoxics, 68 kinase inhibitors, and 11 epigenetic modulators. For 38 compounds this is the first comparative profiling in a cell line panel. By strictly maintaining optimized assay protocols, biological variation was kept to a minimum. Replicate profiles of 16 agents over three years show a high average Pearson correlation of 0.8 using IC50 values and 0.9 using GI50 values. Good correlations were observed with other panels. Curve fitting appears a large source of variation. Hierarchical clustering revealed 44 basic clusters, of which 26 contain compounds with common mechanisms of action, of which 9 were not reported before, including TTK, BET and two clusters of EZH2 inhibitors. To investigate unexpected clusterings, sets of BTK, Aurora and PI3K inhibitors were profiled in biochemical enzyme activity assays and surface plasmon resonance binding assays. The BTK inhibitor ibrutinib clusters with EGFR inhibitors, because it cross-reacts with EGFR. Aurora kinase inhibitors separate into two clusters, related to Aurora A or pan-Aurora selectivity. Similarly, 12 inhibitors in the PI3K/AKT/mTOR pathway separated into different clusters, reflecting biochemical selectivity (pan-PI3K, PI3Kβ-isoform selective or mTOR-selective). Of these, only allosteric mTOR inhibitors preferentially targeted PTEN-mutated cell lines. This shows that cell line profiling is an excellent tool for the unbiased classification of antiproliferative compounds. Mol Cancer Ther; 15(12); 3097–109. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2gGnwQ3
via IFTTT

Cabozantinib Is Active against Human Gastrointestinal Stromal Tumor Xenografts Carrying Different KIT Mutations

In the majority of gastrointestinal stromal tumors (GIST), oncogenic signaling is driven by KIT mutations. Advanced GIST is treated with tyrosine kinase inhibitors (TKI) such as imatinib. Acquired resistance to TKI is mainly caused by secondary KIT mutations, but can also be attributed to a switch of KIT dependency to another receptor tyrosine kinase (RTK). We tested the efficacy of cabozantinib, a novel TKI targeting KIT, MET, AXL, and vascular endothelial growth factor receptors (VEGFR), in patient-derived xenograft (PDX) models of GIST, carrying different KIT mutations. NMRI nu/nu mice (n = 52) were bilaterally transplanted with human GIST: UZLX-GIST4 (KIT exon 11 mutation, imatinib sensitive), UZLX-GIST2 (KIT exon 9, imatinib dose-dependent resistance), or UZLX-GIST9 (KIT exon 11 and 17 mutations, imatinib resistant). Mice were grouped as control (untreated), imatinib (50 mg/kg/bid), and cabozantinib (30 mg/kg/qd) and treated orally for 15 days. Cabozantinib resulted in significant tumor regression in UZLX-GIST4 and -GIST2 and delayed tumor growth in -GIST9. In all three models, cabozantinib inhibited the proliferative activity, which was completely absent in UZLX-GIST4 and significantly reduced in -GIST2 and -GIST9. Increased apoptotic activity was observed only in UZLX-GIST4. Cabozantinib inhibited the KIT signaling pathway in UZLX-GIST4 and -GIST2. In addition, compared with both control and imatinib, cabozantinib significantly reduced microvessel density in all models. In conclusion, cabozantinib showed antitumor activity in GIST PDX models through inhibition of tumor growth, proliferation, and angiogenesis, in both imatinib-sensitive and imatinib-resistant models. Mol Cancer Ther; 15(12); 2845–52. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2fMKHLZ
via IFTTT

The Potential Roles of Long Noncoding RNAs (lncRNA) in Glioblastoma Development

Long noncoding RNA (lncRNA) may contribute to the initiation and progression of tumor. In this study, we first systematically compared lncRNA and mRNA expression between glioblastoma and paired normal brain tissues using microarray data. We found 27 lncRNA and 82 mRNA significantly upregulated in glioblastoma, as well as 198 lncRNA and 285 mRNA significantly downregulated in glioblastoma. We identified 138 coexpressed lncRNA–mRNA pairs from these differentially expressed lncRNA and genes. Subsequent pathway analysis of the lncRNA-paired genes indicated that EphrinB–EPHB, p75-mediated signaling, TNFα/NF-B, and ErbB2/ErbB3 signaling pathways might be altered in glioblastoma. Specifically, lncRNA RAMP2-AS1 had significant decrease of expression in glioblastoma tissues and showed coexpressional relationship with NOTCH3, an important tumor promoter in many neoplastic diseases. Our follow up experiment indicated that (i) an overexpression of RAMP2-AS1 reduced glioblastoma cell proliferation in vitro and also reduced glioblastoma xenograft tumors in vivo; (ii) NOTCH3 and RAMP2-AS1 coexpression rescued the inhibitory action of RAMP2-AS1 in glioblastoma cells; and (iii) RNA pull-down assay revealed a direct interaction of RAMP2-AS1 with DHC10, which may consequently inhibit, as we hypothesize, the expression of NOTCH3 and its downstream signaling molecule HES1 in glioblastoma. Taken together, our data revealed that lncRNA expression profile in glioblastoma tissue was significantly altered; and RAMP2-AS1 might play a tumor suppressive role in glioblastoma through an indirect inhibition of NOTCH3. Our results provided some insights into understanding the key roles of lncRNA–mRNA coregulation in human glioblastoma and the mechanisms responsible for glioblastoma progression and pathogenesis. Mol Cancer Ther; 15(12); 2977–86. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2gSY3Cl
via IFTTT

Novel ABCG2 Antagonists Reverse Topotecan-Mediated Chemotherapeutic Resistance in Ovarian Carcinoma Xenografts

Chemotherapeutic resistance remains a challenge in the treatment of ovarian carcinoma, especially in recurrent disease. Despite the fact that most patients with newly diagnosed tumors attain complete remission following cytoreductive surgery and chemotherapy, ovarian carcinoma has a recurrence rate that exceeds 75%. The ATP-binding cassette family G member 2 (ABCG2) efflux protein has been described as one mechanism that confers multiple-drug resistance to solid tumors and contributes to topotecan resistance in ovarian carcinoma. In fact, one clinical trial demonstrated ABCG2 expression in all patients with primary or recurrent ovarian carcinoma. On the basis of our previous work, we hypothesized that three compounds (CID44640177, CID1434724, and CID46245505), which represent a new piperazine-substituted pyrazolo[1,5]pyrimidine substructure class of ABCG2-specific antagonists, would restore chemosensitivity to drug-resistant ovarian cancer in vitro and in vivo. To address the treatment difficulties associated with chemotherapeutic resistance in ovarian cancer, we combined each compound (CID44640177, CID1434724, and CID46245505) with topotecan and administered the mixture to chemoresistant Igrov1/T8 ovarian cancer cells in vitro and Igrov1/T8 xenografts in CB-17 SCID mice. We found that only nanomolar concentrations of each ABCG2 inhibitor in combination with topotecan were required to restore chemosensitivity to Igrov1/T8 cells in vitro. In vivo, substantial tumor reduction was achieved with each compound in 4 days, with CID1434724 causing the largest reduction in excess of 60%. No signs of secondary toxic effects were observed with the ABCG2 antagonists. These novel compounds should be viewed as promising drug candidates to reverse ABCG2-mediated chemoresistance. Mol Cancer Ther; 15(12); 2853–62. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2fMTBJ9
via IFTTT

Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors

Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein–protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTKHigh cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTKLow cells. Finally, HER2+ cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2+ cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028–39. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2gSOHXg
via IFTTT

Fisetin Enhances Chemotherapeutic Effect of Cabazitaxel against Human Prostate Cancer Cells

Although treatment of prostate cancer has improved over the past several years, taxanes, such as cabazitaxel, remain the only form of effective chemotherapy that improves survival in patients with metastatic castration–resistant prostate cancer. However, the effectiveness of this class of drugs has been associated with various side effects and drug resistance. We previously reported that fisetin, a hydroxyflavone, is a microtubule-stabilizing agent and inhibits prostate cancer cell proliferation, migration, and invasion and suggested its use as an adjuvant for treatment of prostate and other cancer types. In this study, we investigated the effect of fisetin in combination with cabazitaxel with the objective to achieve maximum therapeutic benefit, reduce dose and toxicity, and minimize or delay the induction of drug resistance and metastasis. Our data show for the first time that a combination of fisetin (20 μmol/L) enhances cabazitaxel (5 nmol/L) and synergistically reduces 22R1, PC-3M-luc-6, and C4-2 cell viability and metastatic properties with minimal adverse effects on normal prostate epithelial cells. In addition, the combination of fisetin with cabazitaxel was associated with inhibition of proliferation and enhancement of apoptosis. Furthermore, combination treatment resulted in the inhibition of tumor growth, invasion, and metastasis when assessed in two in vivo xenograft mouse models. These results provide evidence that fisetin may have therapeutic benefit for patients with advanced prostate cancer through enhancing the efficacy of cabazitaxel under both androgen-dependent and androgen-independent conditions. This study underscores the benefit of the combination of fisetin with cabazitaxel for the treatment of advanced and resistant prostate cancer and possibly other cancer types. Mol Cancer Ther; 15(12); 2863–74. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2fMSoSr
via IFTTT

Macrophage Susceptibility to Emactuzumab (RG7155) Treatment

Blockade of colony-stimulating factor-1 receptor (CSF-1R) enables the therapeutic targeting of tumor-associated macrophages (TAM) in cancer patients. Various CSF-1R inhibitors, mAbs, and tyrosine kinase inhibitors are currently evaluated in early clinical trials. Presence of an alternative survival signal, such as GM-CSF, rescues human monocyte-derived macrophages from CSF-1R inhibitor–induced apoptosis. In this study, we sought to identify additional factors that mediate resistance to CSF-1R–blocking antibody RG7155 (emactuzumab). We investigated the impact of hypoxia, macrophage-polarizing cytokines IL4 and IL10, and genetic alterations within the CSF1R locus and mitochondrial DNA. Among all investigated factors, only IL4 completely rescued viability of RG7155-treated macrophages in vitro. This RG7155-resistant population was characterized by a substantially increased mannose receptor-1 (CD206) expression. Analysis of CD206 and the hemoglobin scavenger receptor CD163 expression on normal tissue allowed for discrimination of distinct macrophage populations according to localization and frequency. In emactuzumab-treated cancer patients, we found a significant reduction of CSF-1R, CD204, and CD163 mRNA levels in contrast to a less pronounced decrease of CD206 expression by transcriptome analysis of tumor biopsies. However, we detected in normal skin tissue, which shows lower IL4 mRNA expression compared with melanoma tissue, significant reduction of CD206+ dermal macrophages in RG7155-treated skin biopsies. These results suggest that in cancers where the cytokines IL4 and GM-CSF are sufficiently expressed to induce very high CD206 expression on macrophages, CSF-1R inhibition may not deplete CD206hi TAM. This observation can help to identify those patients most likely to benefit from CSF-1R–targeting agents. Mol Cancer Ther; 15(12); 3077–86. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2gOKzZI
via IFTTT

Mitochondrial Targeting of Metformin Enhances Its Activity against Pancreatic Cancer

Pancreatic cancer is one of the hardest-to-treat types of neoplastic diseases. Metformin, a widely prescribed drug against type 2 diabetes mellitus, is being trialed as an agent against pancreatic cancer, although its efficacy is low. With the idea of delivering metformin to its molecular target, the mitochondrial complex I (CI), we tagged the agent with the mitochondrial vector, triphenylphosphonium group. Mitochondrially targeted metformin (MitoMet) was found to kill a panel of pancreatic cancer cells three to four orders of magnitude more efficiently than found for the parental compound. Respiration assessment documented CI as the molecular target for MitoMet, which was corroborated by molecular modeling. MitoMet also efficiently suppressed pancreatic tumors in three mouse models. We propose that the novel mitochondrially targeted agent is clinically highly intriguing, and it has a potential to greatly improve the bleak prospects of patients with pancreatic cancer. Mol Cancer Ther; 15(12); 2875–86. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2gST4lk
via IFTTT

Correction: Antagonists of IGF: Vitronectin Interactions Inhibit IGF-I-Induced Breast Cancer Cell Functions



from Cancer via ola Kala on Inoreader http://ift.tt/2fMWWIe
via IFTTT

Reactivation of p53 by MDM2 Inhibitor MI-77301 for the Treatment of Endocrine-Resistant Breast Cancer

Endocrine therapy has been highly effective for the treatment of estrogen receptor–positive breast cancer, but endocrine resistance develops in a significant proportion of patients. In an effort to develop novel therapeutic strategies for the treatment of endocrine-resistant breast cancer, we have evaluated a potent and specific MDM2–p53 interaction inhibitor, MI-77301, which has been advanced into clinical development, for its therapeutic potential and mechanism of action in vitro and in vivo in WHIM9 and WHIM18 patient-derived xenograft (PDX) models. Both WHIM9 and WHIM18 PDX models exhibit estradiol-independent tumor growth and are resistant to fulvestrant, a highly effective and selective estrogen receptor degrader (SERD). MI-77301 activates wild-type p53 in WHIM9 and WHIM18 cells in vitro and in xenograft tumor tissues in vivo, and it effectively induces upregulation of p21 and cell-cycle arrest in vitro in both models. Although fulvestrant fails to inhibit tumor growth in either of the xenograft models, MI-77301 is highly effective in inhibition of tumor growth at a well-tolerated dose schedule. This study provides a preclinical rationale for evaluation of MI-77301 or other MDM2 inhibitors as a new therapeutic strategy for the treatment of endocrine-resistant breast cancer retaining wild-type p53. Mol Cancer Ther; 15(12); 2887–93. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2gSPUxZ
via IFTTT

Ascochlorin Enhances the Sensitivity of Doxorubicin Leading to the Reversal of Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma

Increasing evidence has indicated that epithelial-to-mesenchymal transition (EMT) at the advanced stage of liver cancer not only has the ability to self-renew and progress cancer, but also enables greater resistance to conventional chemo- and radiotherapies. Here, we report that ascochlorin (ASC), an isoprenoid antibiotic, could potentiate the cytotoxic effect of doxorubicin on HCCLM3, SNU387, SNU49, and SK-Hep-1 hepatocellular carcinoma cells, which had a predominantly mesenchymal signature with low expression of E-cadherin but high expression of N-cadherin. Co-administration of ASC reduced doxorubicin-induced invasion/migration and modulated EMT characteristics in mesenchymal cells. This process was probably mediated by the E-cadherin repressors Snail and Slug. In addition, ASC increased sensitivity to doxorubicin treatment by directly inhibiting STAT3 binding to the Snail promoter. We also observed that ASC significantly enhanced the effect of doxorubicin against tumor growth and inhibited metastasis in an HCCLM3_Luc orthotopic mouse model. Collectively, our data demonstrate that ASC can increase sensitivity to doxorubicin therapy and reverse the EMT phenotype via the downregulation of STAT3-Snail expression, which could form the basis of a novel therapeutic approach against hepatocellular carcinoma. Mol Cancer Ther; 15(12); 2966–76. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2fMPi0B
via IFTTT

Antitumor and Antiangiogenic Effects of Aspirin-PC in Ovarian Cancer

To determine the efficacy of a novel and safer (for gastrointestinal tract) aspirin (aspirin-PC) in preclinical models of ovarian cancer, in vitro dose–response studies were performed to compare the growth-inhibitory effect of aspirin-PC versus aspirin on three human (A2780, SKOV3ip1, and HeyA8) and a mouse (ID8) ovarian cancer cell line over an 8-day culture period. In the in vivo studies, the aspirin test drugs were studied alone and in the presence of a VEGF-A inhibitor (bevacizumab or B20), due to an emerging role for platelets in tumor growth following antiangiogenic therapy, and we examined their underlying mechanisms. Aspirin-PC was more potent (vs. aspirin) in blocking the growth of both human and mouse ovarian cancer cells in monolayer culture. Using in vivo model systems of ovarian cancer, we found that aspirin-PC significantly reduced ovarian cancer growth by 50% to 90% (depending on the ovarian cell line). The efficacy was further enhanced in combination with Bevacizumab or B20. The growth-inhibitory effect on ovarian tumor mass and number of tumor nodules was evident, but less pronounced for aspirin and the VEGF inhibitors alone. There was no detectable gastrointestinal toxicity. Both aspirin and aspirin-PC also inhibited cell proliferation, angiogenesis, and increased apoptosis of ovarian cancer cells. In conclusion, PC-associated aspirin markedly inhibits the growth of ovarian cancer cells, which exceeds that of the parent drug, in both cell culture and in mouse model systems. We also found that both aspirin-PC and aspirin have robust antineoplastic action in the presence of VEGF-blocking drugs. Mol Cancer Ther; 15(12); 2894–904. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2gSVm3D
via IFTTT

The BRAF Inhibitor Vemurafenib Activates Mitochondrial Metabolism and Inhibits Hyperpolarized Pyruvate-Lactate Exchange in BRAF-Mutant Human Melanoma Cells

Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long-term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity, and potential as noninvasive imaging response biomarkers. 1H NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF-mutant (WM266.4 and SKMEL28) but not BRAFWT (CHL-1 and D04) human melanoma cells. In WM266.4 cells, this was associated with increased acetate, glycine, and myo-inositol levels and decreased fatty acyl signals, while the bioenergetic status was maintained. 13C NMR metabolic flux analysis of treated WM266.4 cells revealed inhibition of de novo lactate synthesis and glucose utilization, associated with increased oxidative and anaplerotic pyruvate carboxylase mitochondrial metabolism and decreased lipid synthesis. This metabolic shift was associated with depletion of hexokinase 2, acyl-CoA dehydrogenase 9, 3-phosphoglycerate dehydrogenase, and monocarboxylate transporters (MCT) 1 and 4 in BRAF-mutant but not BRAFWT cells and, interestingly, decreased BRAF-mutant cell dependency on glucose and glutamine for growth. Further, the reduction in MCT1 expression observed led to inhibition of hyperpolarized 13C-pyruvate–lactate exchange, a parameter that is translatable to in vivo imaging studies, in live WM266.4 cells. In conclusion, our data provide new insights into the molecular and metabolic consequences of BRAF inhibition in BRAF-driven human melanoma cells that may have potential for combinatorial therapeutic targeting as well as noninvasive imaging of response. Mol Cancer Ther; 15(12); 2987–99. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2h1fDs8
via IFTTT

Small-Molecule Disruption of the Myb/p300 Cooperation Targets Acute Myeloid Leukemia Cells

The transcription factor c-Myb is essential for the proliferation of hematopoietic cells and has been implicated in the development of leukemia and other human cancers. Pharmacologic inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. By using a Myb reporter cell line, we have identified plumbagin and several naphthoquinones as potent low-molecular weight Myb inhibitors. We demonstrate that these compounds inhibit c-Myb by binding to the c-Myb transactivation domain and disrupting the cooperation of c-Myb with the coactivator p300, a major driver of Myb activity. Naphthoquinone-induced inhibition of c-Myb suppresses Myb target gene expression and induces the differentiation of the myeloid leukemia cell line HL60. We demonstrate that murine and human primary acute myeloid leukemia cells are more sensitive to naphthoquinone-induced inhibition of clonogenic proliferation than normal hematopoietic progenitor cells. Overall, our work demonstrates for the first time the potential of naphthoquinones as small-molecule Myb inhibitors that may have therapeutic potential for the treatment of leukemia and other tumors driven by deregulated Myb. Mol Cancer Ther; 15(12); 2905–15. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2fMOt7S
via IFTTT

Mutant BRAF Upregulates MCL-1 to Confer Apoptosis Resistance that Is Reversed by MCL-1 Antagonism and Cobimetinib in Colorectal Cancer

Oncogenic BRAFV600E mutations activate MAPK signaling and are associated with treatment resistance and poor prognosis in patients with colorectal cancer. In BRAFV600E-mutant colorectal cancers, treatment failure may be related to BRAFV600E-mediated apoptosis resistance that occurs by an as yet undefined mechanism. We found that BRAFV600E can upregulate anti-apoptotic MCL-1 in a gene dose-dependent manner using colorectal cancer cell lines isogenic for BRAF. BRAFV600E-induced MCL-1 upregulation was confirmed by ectopic BRAFV600E expression that activated MEK/ERK signaling to phosphorylate (MCL-1Thr163) and stabilize MCL-1. Upregulation of MCL-1 was mediated by MEK/ERK shown by the ability of ERK siRNA to suppress MCL-1. Stabilization of MCL-1 by phosphorylation was shown by a phosphorylation-mimicking mutant and an unphosphorylated MCL-1 mutant that decreased or increased MCL-1 protein turnover, respectively. MEK/ERK inhibition by cobimetinib suppressed MCL-1 expression/phosphorylation and induced proapoptotic BIM to a greater extent than did vemurafenib in BRAFV600E cell lines. MCL-1 knockdown versus control shRNA significantly enhanced cobimetinib-induced apoptosis in vitro and in HT29 colon cancer xenografts. The small-molecule MCL-1 inhibitor, A-1210477, also enhanced cobimetinib-induced apoptosis in vitro that was due to disruption of the interaction of MCL-1 with proapoptotic BAK and BIM. Knockdown of BIM attenuated BAX, but not BAK, activation by cobimetinib plus A-1210477. In summary, BRAFV600E-mediated MEK/ERK activation can upregulate MCL-1 by phosphorylation/stabilization to confer apoptosis resistance that can be reversed by MCL-1 antagonism combined with cobimetinib, suggesting a novel therapeutic strategy against BRAFV600E-mutant CRCs. Mol Cancer Ther; 15(12); 3015–27. ©2016 AACR.



from Cancer via ola Kala on Inoreader http://ift.tt/2gSVjVv
via IFTTT

Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility

Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum. We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro. Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target.

Implications: The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288–99. ©2016 AACR.



http://ift.tt/2gGgQkZ

The Cytoskeletal Adapter Protein Spinophilin Regulates Invadopodia Dynamics and Tumor Cell Invasion in Glioblastoma

Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvβ8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of β8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment.

Implications: Tumor cell invasion is a major clinical obstacle in glioblastoma and this study identifies a new signaling pathway regulated by Spinophilin in invasive glioblastoma. Mol Cancer Res; 14(12); 1277–87. ©2016 AACR.



http://ift.tt/2fYJIa4

Acknowledgment to Reviewers



http://ift.tt/2gGkGdV

Adipose-Induced Retroperitoneal Soft Tissue Sarcoma Tumorigenesis: A Potential Crosstalk between Sarcoma and Fat Cells

Previous data demonstrated that high retroperitoneal visceral fat content increases retroperitoneal soft-tissue sarcoma (RSTS) local recurrence and patients' mortality. Most RSTS tumors initiate and recur within visceral fat. The objective of the current study was to evaluate potential paracrine effects of visceral fat on RSTS. A xenograft model was used to evaluate in vivo effects of human visceral fat on STS growth. Tissue explants were prepared from visceral fat, and their conditioned medium (CM) was utilized for various in vitro experiments designed to evaluate growth, survival, migration, and invasion of STS and endothelial cells. Visceral fat–secreted protumorigenic factors were identified by mass spectrometry. The in vivo experiments demonstrated a significant increase in STS tumor growth rate when SK-LMS-1 leiomyosarcoma cells were colocalized with human visceral fat compared with subcutaneous injection of cancer cells only. The in vitro model demonstrated that visceral fat CM increased STS cellular growth and reduced doxorubicin-induced apoptosis. Visceral fat also enhanced STS cellular migration and invasion. In addition, visceral fat CM significantly increased endothelial cell tube formation, suggesting its role as a proangiogenic factor in the STS tumor microenvironment (TME). Using a robust proteomic approach, liquid chromatography and tandem mass spectrometry resolved various molecules within the visceral fat CM, of which a subset was associated with protumorigenic biologic processes. These results suggest that visceral fat directly interacts with STS cells by secreting specific adipokines into the TME, thus augmenting STS tumor cell proliferation and invasiveness. Fat-induced STS molecular deregulations should be studied to identify new potential prognostic and therapeutic targets.

Implications: Visceral fat induces protumorigenic effects, in STS, through various secreted factors that should be investigated to improve our understanding of adipose–cancer cell interactions. Mol Cancer Res; 14(12); 1254–65. ©2016 AACR.



http://ift.tt/2fYDYx0

Increased Expression of System xc- in Glioblastoma Confers an Altered Metabolic State and Temozolomide Resistance

Glioblastoma multiforme is the most aggressive malignant primary brain tumor in adults. Several studies have shown that glioma cells upregulate the expression of xCT (SLC7A11), the catalytic subunit of system xc, a transporter involved in cystine import, that modulates glutathione production and glioma growth. However, the role of system xc in regulating the sensitivity of glioma cells to chemotherapy is currently debated. Inhibiting system xc with sulfasalazine decreased glioma growth and survival via redox modulation, and use of the chemotherapeutic agent temozolomide together with sulfasalazine had a synergistic effect on cell killing. To better understand the functional consequences of system xc in glioma, stable SLC7A11-knockdown and -overexpressing U251 glioma cells were generated. Modulation of SLC7A11 did not alter cellar proliferation but overexpression did increase anchorage-independent cell growth. Knockdown of SLC7A11 increased basal reactive oxygen species (ROS) and decreased glutathione generation resulting in increased cell death under oxidative and genotoxic stress. Overexpression of SLC7A11 resulted in increased resistance to oxidative stress and decreased chemosensitivity to temozolomide. In addition, SLC7A11 overexpression was associated with altered cellular metabolism including increased mitochondrial biogenesis, oxidative phosphorylation, and ATP generation. These results suggest that expression of SLC7A11 in the context of glioma contributes to tumorigenesis, tumor progression, and resistance to standard chemotherapy.

Implications: SLC7A11, in addition to redox modulation, appears to be associated with increased cellular metabolism and is a mediator of temozolomide resistance in human glioma, thus making system xC a potential therapeutic target in glioblastoma multiforme. Mol Cancer Res; 14(12); 1229–42. ©2016 AACR.



http://ift.tt/2fRNfmW

Olaparib, Monotherapy or with Ionizing Radiation, Exacerbates DNA Damage in Normal Tissues: Insights from a New p21 Reporter Mouse

Many drugs targeting the DNA damage response are being developed as anticancer therapies, either as single agents or in combination with ionizing radiation (IR) or other cytotoxic agents. Numerous clinical trials in this area are either in progress or planned. However, concerns remain about the potential of such treatments to increase toxicity to normal tissues. In order to address this issue, a novel reporter mouse line was created through the simultaneous incorporation of multiple reporters, β-galactosidase, and firefly luciferase, into the DNA damage–inducible p21 (CDKN1A) locus. The data demonstrate that in situ β-galactosidase staining facilitates high fidelity mapping of p21 expression across multiple organs and tissues at single-cell resolution, whereas the luciferase reporter permits noninvasive bioluminescent imaging of p21 expression. This model was used to determine the capacity of a number of DNA-damaging agents, including IR, cisplatin, and etoposide to induce p21 expression in normal tissues. In addition, the PARP inhibitor olaparib was examined alone or in combination with IR as well as cisplatin. A single exposure to olaparib alone caused DNA damage to cells in the mucosal layer lining mouse large intestine. It also exacerbated DNA damage induced in this organ and the kidney by coadministered IR. These studies suggest that olaparib has carcinogenic potential and illustrate the power of this new model to evaluate the safety of new therapeutic regimens involving combination therapies.

Implications: Olaparib causes DNA damage to normal tissues and might be a carcinogen. Mol Cancer Res; 14(12); 1195–203. ©2016 AACR.



http://ift.tt/2gGgQSh

AMPK{alpha}2 Regulates Bladder Cancer Growth through SKP2-Mediated Degradation of p27

AMP-activated protein kinase (AMPK) is the central metabolic regulator of the cell and controls energy consumption based upon nutrient availability. Due to its role in energy regulation, AMPK has been implicated as a barrier for cancer progression and is suppressed in multiple cancers. To examine whether AMPK regulates bladder cancer cell growth, HTB2 and HT1376 bladder cells were treated with an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). AICAR treatment reduced proliferation and induced the expression of p27Kip1 (CDKN1B), which was mediated through an mTOR-dependent mechanism. Interestingly, AMPKα2 knockdown resulted in reduced p27 levels, whereas AMPKα1 suppression did not. To further determine the exact mechanism by which AMPKa2 regulates p27, HTB2 and HT1376 cells were transduced with an shRNA targeting AMPKα2. Stable knockdown of AMPKα2 resulted in increased proliferation and decreased p27 protein. The reduced p27 protein was determined to be dependent upon SKP2. Additionally, loss of AMPKα2 in a xenograft and a chemical carcinogen model of bladder cancer resulted in larger tumors with less p27 protein and high SKP2 levels. Consistent with the regulation observed in the bladder cancer model systems, a comprehensive survey of human primary bladder cancer clinical specimens revealed low levels of AMPKα2 and p27 and high levels of SKP2.

Implications: These results highlight the contribution of AMPKα2 as a mechanism for controlling bladder cancer growth by regulating proliferation through mTOR suppression and induction of p27 protein levels, thus indicating how AMPKα2 loss may contribute to tumorigenesis. Mol Cancer Res; 14(12); 1182–94. ©2016 AACR.



http://ift.tt/2fYJHTy

A New Chromatin-Cytoskeleton Link in Cancer

The set domain containing 2 (SETD2) histone methyltransferase, located at 3p2, specifically trimethylates lysine 36 of histone H3 (H3K36me3). H3K36me3 is an active mark involved in transcriptional elongation and RNA processing and a key regulator of DNA repair. In fact, SETD2 is the only methyltransferase that "writes" the H3K36me3 mark. Recent results from Park and colleagues have found a new role for SETD2 in the methylation of K40 of α-tubulin. Loss of SETD2 abolishes methylation of K40 of α-tubulin and results in a dysfunctional mitotic spindle and abnormalities in cytokinesis. Thus, SETD2 links chromatin and cytoskeleton homeostasis through its methyltransferase activity. These studies have important implications on the role of SETD2 mutations in promoting genomic instability and tumor progression. Mol Cancer Res; 14(12); 1173–5. ©2016 AACR.



http://ift.tt/2gGiN0O

Heparanase Promotes Glioma Progression and Is Inversely Correlated with Patient Survival

Malignant glioma continues to be fatal, despite improved insight into its underlying molecular mechanisms. The most malignant form, glioblastoma (GBM), is characterized by aberrant activation of receptor tyrosine kinases (RTK) and infiltrative growth. Heparan sulfate proteoglycans (HSPG), integral components of the extracellular matrix of brain tumors, can regulate activation of many RTK pathways. This prompted us to investigate heparanase (HPSE), which cleaves HSPGs, for its role in glioma. This hypothesis was evaluated using tissue microarrays, GBM cells derived from patients, murine in vitro and in vivo models of glioma, and public databases. Downregulation of HPSE attenuated glioma cell proliferation, whereas addition of HPSE stimulated growth and activated ERK and AKT signaling. Using HPSE transgenic and knockout mice, it was demonstrated that tumor development in vivo was positively correlated to HPSE levels in the brain. HPSE also modified the tumor microenvironment, influencing reactive astrocytes, microglia/monocytes, and tumor angiogenesis. Furthermore, inhibition of HPSE reduces tumor cell numbers, both in vitro and in vivo. HPSE was highly expressed in human glioma and GBM cell lines, compared with normal brain tissue. Indeed, a correlation was observed between high levels of HPSE and shorter survival of patients with high-grade glioma. In conclusion, these data provide proof-of-concept for anti-HPSE treatment of malignant glioma, as well as novel insights for the development of HPSE as a therapeutic target.

Implications: This study aims to target both the malignant brain tumor cells per se and their microenvironment by changing the level of an enzyme, HPSE, that breaks down modified sugar chains on cell surfaces and in the extracellular space. Mol Cancer Res; 14(12); 1243–53. ©2016 AACR.



http://ift.tt/2gMTVaF

Synthetic Lethality in PTEN-Mutant Prostate Cancer Is Induced by Combinatorial PI3K/Akt and BCL-XL Inhibition

The bone-conserved metastatic phenotype of prostate cancer is a prototype of nonrandom metastatic behavior. Adhesion of prostate cancer cells to fibronectin via the integrin α5 (ITGA5) has been proposed as a candidate bone marrow niche localization mechanism. We hypothesized that the mechanisms whereby ITGA5 regulates the adhesion-mediated survival of prostate cancer cells will define novel therapeutic approaches. ITGA5 shRNA reduced expression of BCL-2 family members and induced apoptosis in PC-3 cells. In these PTEN-mutant cells, pharmacologic inhibition of the PI3K signaling pathway in combination with ITGA5 knockdown enhanced apoptosis. Chemical parsing studies with BH3 mimetics indicated that PI3K/Akt inhibition in combination with BCL-XL–specific inhibition induces synergistic apoptosis specifically in PTEN-mutant prostate cancer cells, whereas single-agent PI3K/Akt inhibitors did not. Given the importance of PTEN loss in the progression of prostate and other cancers, synthetic lethality induced by combinatorial PI3K/Akt and BCL-XL inhibition represents a valuable therapeutic strategy.

Implications: Activation of the PI3K pathway through PTEN loss represents a major molecular pathway in the progression of prostate and other cancers. This study defines a synthetic lethal therapeutic combination with significant translational potential.

Overview: Synthetic lethality in PTEN-mutant prostate cancer cells with combined PI3K/Akt and BCL-XL inhibition. PTEN-mutant prostate cancer cells expressing ITGA5 bind to fibronectin in the putative bone marrow niche and transduce survival signals to BCL-XL. Additional PTEN-regulated signals independent of the PI3K/Akt pathway likely feed into the BCL-XL–regulated survival program to explain synthetic lethality observed with the combination.

Visual Overview: http://ift.tt/2gGdwX0. Mol Cancer Res; 14(12); 1176–81. ©2016 AACR.



http://ift.tt/2fYSJzB

MUC1-C Represses the Crumbs Complex Polarity Factor CRB3 and Downregulates the Hippo Pathway

Apical–basal polarity and epithelial integrity are maintained in part by the Crumbs (CRB) complex. The C--terminal subunit of MUC1 (MUC1-C) is a transmembrane protein that is expressed at the apical border of normal epithelial cells and aberrantly at high levels over the entire surface of their transformed counterparts. However, it is not known whether MUC1-C contributes to this loss of polarity that is characteristic of carcinoma cells. Here it is demonstrated that MUC1-C downregulates expression of the Crumbs complex CRB3 protein in triple-negative breast cancer (TNBC) cells. MUC1-C associates with ZEB1 on the CRB3 promoter and represses CRB3 transcription. Notably, CRB3 activates the core kinase cassette of the Hippo pathway, which includes LATS1 and LATS2. In this context, targeting MUC1-C was associated with increased phosphorylation of LATS1, consistent with activation of the Hippo pathway, which is critical for regulating cell contact, tissue repair, proliferation, and apoptosis. Also shown is that MUC1-C--mediated suppression of CRB3 and the Hippo pathway is associated with dephosphorylation and activation of the oncogenic YAP protein. In turn, MUC1-C interacts with YAP, promotes formation of YAP/β-catenin complexes, and induces the WNT target gene MYC. These data support a previously unrecognized pathway in which targeting MUC1-C in TNBC cells (i) induces CRB3 expression, (ii) activates the CRB3-driven Hippo pathway, (iii) inactivates YAP, and thereby (iv) suppresses YAP/β-catenin–mediated induction of MYC expression.

Implications: These findings demonstrate a previously unrecognized role for the MUC1-C oncoprotein in the regulation of polarity and the Hippo pathway in breast cancer. Mol Cancer Res; 14(12); 1266–76. ©2016 AACR.



http://ift.tt/2fYIQ52

MEK and TAK1 Regulate Apoptosis in Colon Cancer Cells with KRAS-Dependent Activation of Proinflammatory Signaling

MEK inhibitors have limited efficacy in treating RAS–RAF–MEK pathway–dependent cancers due to feedback pathway compensation and dose-limiting toxicities. Combining MEK inhibitors with other targeted agents may enhance efficacy. Here, codependencies of MEK, TAK1, and KRAS in colon cancer were investigated. Combined inhibition of MEK and TAK1 potentiates apoptosis in KRAS-dependent cells. Pharmacologic studies and cell-cycle analyses on a large panel of colon cancer cell lines demonstrate that MEK/TAK1 inhibition induces cell death, as assessed by sub-G1 accumulation, in a distinct subset of cell lines. Furthermore, TAK1 inhibition causes G2–M cell-cycle blockade and polyploidy in many of the cell lines. MEK plus TAK1 inhibition causes reduced G2–M/polyploid cell numbers and additive cytotoxic effects in KRAS/TAK1-dependent cell lines as well as a subset of BRAF-mutant cells. Mechanistically, sensitivity to MEK/TAK1 inhibition can be conferred by KRAS and BMP receptor activation, which promote expression of NF-B-dependent proinflammatory cytokines, driving tumor cell survival and proliferation. MEK/TAK1 inhibition causes reduced mTOR, Wnt, and NF-B signaling in TAK1/MEK-dependent cell lines concomitant with apoptosis. A Wnt/NF-B transcriptional signature was derived that stratifies primary tumors into three major subtypes: Wnt-high/NF-B-low, Wnt-low/NF-B-high and Wnt-high/NF-B-high, designated W, N, and WN, respectively. These subtypes have distinct characteristics, including enrichment for BRAF mutations with serrated carcinoma histology in the N subtype. Both N and WN subtypes bear molecular hallmarks of MEK and TAK1 dependency seen in cell lines. Therefore, N and WN subtype signatures could be utilized to identify tumors that are most sensitive to anti-MEK/TAK1 therapeutics.

Implications: This study describes a potential therapeutic strategy for a subset of colon cancers that are dependent on oncogenic KRAS signaling pathways, which are currently difficult to block with selective agents. Mol Cancer Res; 14(12); 1204–16. ©2016 AACR.



http://ift.tt/2gGdIFW

Highlights of This Issue



http://ift.tt/2fYFO0J

Integrated Genetic, Epigenetic, and Transcriptional Profiling Identifies Molecular Pathways in the Development of Laterally Spreading Tumors

Laterally spreading tumors (LST) are colorectal adenomas that develop into extremely large lesions with predominantly slow progression to cancer, depending on lesion subtype. Comparing and contrasting the molecular profiles of LSTs and colorectal cancers offers an opportunity to delineate key molecular alterations that drive malignant transformation in the colorectum. In a discovery cohort of 11 LSTs and paired normal mucosa, we performed a comprehensive and unbiased screen of the genome, epigenome, and transcriptome followed by bioinformatics integration of these data and validation in an additional 84 large, benign colorectal lesions. Mutation rates in LSTs were comparable with microsatellite-stable colorectal cancers (2.4 vs. 2.6 mutations per megabase); however, copy number alterations were infrequent (averaging only 1.5 per LST). Frequent genetic, epigenetic, and transcriptional alterations were identified in genes not previously implicated in colorectal neoplasia (ANO5, MED12L, EPB41L4A, RGMB, SLITRK1, SLITRK5, NRXN1, ANK2). Alterations to pathways commonly mutated in colorectal cancers, namely, the p53, PI3K, and TGFβ pathways, were rare. Instead, LST-altered genes converged on axonal guidance, Wnt, and actin cytoskeleton signaling. These integrated omics data identify molecular features associated with noncancerous LSTs and highlight that mutation load, which is relatively high in LSTs, is a poor predictor of invasive potential.

Implications: The novel genetic, epigenetic, and transcriptional changes associated with LST development reveal important insights into why some adenomas do not progress to cancer. The finding that LSTs exhibit a mutational load similar to colorectal carcinomas has implications for the validity of molecular biomarkers for assessing cancer risk. Mol Cancer Res; 14(12); 1217–28. ©2016 AACR.



http://ift.tt/2gGjBmh

Highlights of This Issue



http://ift.tt/2fYFNKd

STAT1 Promotes KRAS Colon Tumor Growth and Susceptibility to Pharmacological Inhibition of Translation Initiation Factor eIF4A

The transcription factor STAT1 displays antitumor functions for certain forms of cancer via immunoregulatory and cell-autonomous pathways. Paradoxically, STAT1 can promote the survival of different tumor types treated with chemotherapeutic drugs through mechanisms that are not clearly defined. Herein, we demonstrate that STAT1 displays prosurvival effects in human KRAS colon tumor cells by regulating pathways that converge on the initiation of mRNA translation. Specifically, STAT1 increases PI3K class IB signaling and promotes the downregulation of the programmed cell death protein 4 (PDCD4), a protein with tumor-suppressive properties. PDCD4 downregulation by STAT1 increases the activity of the translation initiation factor eIF4A, which facilitates the cap-independent translation of mRNAs encoding for the antiapoptotic XIAP and BCL-XL in colon tumors with mutated but not normal KRAS. Genetic inactivation of STAT1 impairs the tumorigenic potency of human KRAS colon tumor cells and renders them resistant to the antitumor effects of the pharmacologic inhibition of eIF4A in culture and immunodeficient mice. Our data demonstrate an important connection between mRNA translation and KRAS tumorigenesis under the control of STAT1, which can determine the susceptibility of KRAS tumors to pharmacologic inhibition of mRNA translation initiation. Mol Cancer Ther; 15(12); 3055–63. ©2016 AACR.



http://ift.tt/2gGgP0F

Mechanisms of Resistance to Antibody-Drug Conjugates

Drug resistance limits the effectiveness of cancer therapies. Despite attempts to develop curative anticancer treatments, tumors evolve evasive mechanisms limiting durable responses. Hence, diverse therapies are used to attack cancer, including cytotoxic and targeted agents. Antibody–drug conjugates (ADC) are biotherapeutics designed to deliver potent cytotoxins to cancer cells via tumor-specific antigens. Little is known about the clinical manifestations of drug resistance to this class of therapy; however, recent preclinical studies reveal potential mechanisms of resistance. Because ADCs are a combination of antibody and small molecule cytotoxin, multifactorial modes of resistance are emerging that are inherent to the structure and function of the ADC. Decreased cell-surface antigen reduces antibody binding, whereas elevated drug transporters such as MDR1 and MRP1 reduce effectiveness of the payload. Inherent to the uniqueness of the ADC, other novel resistance mechanisms are emerging, including altered antibody trafficking, ADC processing, and intracellular drug release. Most importantly, the modular nature of the ADC allows components to be switched and replaced, enabling development of second-generation ADCs that overcome acquired resistance. This review is intended to highlight recent progress in our understanding of ADC resistance, including approaches to create preclinical ADC-refractory models and to characterize their emerging mechanisms of resistance. Mol Cancer Ther; 15(12); 2825–34. ©2016 AACR.



http://ift.tt/2fYKzaC

Alkylating Agent-Induced NRF2 Blocks Endoplasmic Reticulum Stress-Mediated Apoptosis via Control of Glutathione Pools and Protein Thiol Homeostasis

Alkylating agents are a commonly used cytotoxic class of anticancer drugs. Understanding the mechanisms whereby cells respond to these drugs is key to identify means to improve therapy while reducing toxicity. By integrating genome-wide gene expression profiling, protein analysis, and functional cell validation, we herein demonstrated a direct relationship between NRF2 and Endoplasmic Reticulum (ER) stress pathways in response to alkylating agents, which is coordinated by the availability of glutathione (GSH) pools. GSH is essential for both drug detoxification and protein thiol homeostasis within the ER, thus inhibiting ER stress induction and promoting survival, an effect independent of its antioxidant role. NRF2 accumulation induced by alkylating agents resulted in increased GSH synthesis via GCLC/GCLM enzyme, and interfering with this NRF2 response by either NRF2 knockdown or GCLC/GCLM inhibition with buthionine sulfoximine caused accumulation of damaged proteins within the ER, leading to PERK-dependent apoptosis. Conversely, upregulation of NRF2, through KEAP1 depletion or NRF2-myc overexpression, or increasing GSH levels with N-acetylcysteine or glutathione-ethyl-ester, decreased ER stress and abrogated alkylating agents–induced cell death. Based on these results, we identified a subset of lung and head-and-neck carcinomas with mutations in either KEAP1 or NRF2/NFE2L2 genes that correlate with NRF2 target overexpression and poor survival. In KEAP1-mutant cancer cells, NRF2 knockdown and GSH depletion increased cell sensitivity via ER stress induction in a mechanism specific to alkylating drugs. Overall, we show that the NRF2-GSH influence on ER homeostasis implicates defects in NRF2-GSH or ER stress machineries as affecting alkylating therapy toxicity. Mol Cancer Ther; 15(12); 3000–14. ©2016 AACR.



http://ift.tt/2gGdv5o

Ibrutinib Inhibits ERBB Receptor Tyrosine Kinases and HER2-Amplified Breast Cancer Cell Growth

Ibrutinib is a potent, small-molecule Bruton tyrosine kinase (BTK) inhibitor developed for the treatment of B-cell malignancies. Ibrutinib covalently binds to Cys481 in the ATP-binding domain of BTK. This cysteine residue is conserved among 9 other tyrosine kinases, including HER2 and EGFR, which can be targeted. Screening large panels of cell lines demonstrated that ibrutinib was growth inhibitory against some solid tumor cells, including those inhibited by other HER2/EGFR inhibitors. Among sensitive cell lines, breast cancer lines with HER2 overexpression were most potently inhibited by ibrutinib (<100 nmol/L); in addition, the IC50s were lower than that of lapatinib and dacomitinib. Inhibition of cell growth by ibrutinib coincided with downregulation of phosphorylation on HER2 and EGFR and their downstream targets, AKT and ERK. Irreversible inhibition of HER2 and EGFR in breast cancer cells was established after 30-minute incubation above 100 nmol/L or following 2-hour incubation at lower concentrations. Furthermore, ibrutinib inhibited recombinant HER2 and EGFR activity that was resistant to dialysis and rapid dilution, suggesting an irreversible interaction. The dual activity toward TEC family (BTK and ITK) and ERBB family kinases was unique to ibrutinib, as ERBB inhibitors do not inhibit or covalently bind BTK or ITK. Xenograft studies with HER2+ MDA-MB-453 and BT-474 cells in mice in conjunction with determination of pharmacokinetics demonstrated significant exposure-dependent inhibition of growth and key signaling molecules at levels that are clinically achievable. Ibrutinib's unique dual spectrum of activity against both TEC family and ERBB kinases suggests broader applications of ibrutinib in oncology. Mol Cancer Ther; 15(12); 2835–44. ©2016 AACR.



http://ift.tt/2fYNOir

Cell Panel Profiling Reveals Conserved Therapeutic Clusters and Differentiates the Mechanism of Action of Different PI3K/mTOR, Aurora Kinase and EZH2 Inhibitors

Cancer cell line panels are important tools to characterize the in vitro activity of new investigational drugs. Here, we present the inhibition profiles of 122 anticancer agents in proliferation assays with 44 or 66 genetically characterized cancer cell lines from diverse tumor tissues (Oncolines). The library includes 29 cytotoxics, 68 kinase inhibitors, and 11 epigenetic modulators. For 38 compounds this is the first comparative profiling in a cell line panel. By strictly maintaining optimized assay protocols, biological variation was kept to a minimum. Replicate profiles of 16 agents over three years show a high average Pearson correlation of 0.8 using IC50 values and 0.9 using GI50 values. Good correlations were observed with other panels. Curve fitting appears a large source of variation. Hierarchical clustering revealed 44 basic clusters, of which 26 contain compounds with common mechanisms of action, of which 9 were not reported before, including TTK, BET and two clusters of EZH2 inhibitors. To investigate unexpected clusterings, sets of BTK, Aurora and PI3K inhibitors were profiled in biochemical enzyme activity assays and surface plasmon resonance binding assays. The BTK inhibitor ibrutinib clusters with EGFR inhibitors, because it cross-reacts with EGFR. Aurora kinase inhibitors separate into two clusters, related to Aurora A or pan-Aurora selectivity. Similarly, 12 inhibitors in the PI3K/AKT/mTOR pathway separated into different clusters, reflecting biochemical selectivity (pan-PI3K, PI3Kβ-isoform selective or mTOR-selective). Of these, only allosteric mTOR inhibitors preferentially targeted PTEN-mutated cell lines. This shows that cell line profiling is an excellent tool for the unbiased classification of antiproliferative compounds. Mol Cancer Ther; 15(12); 3097–109. ©2016 AACR.



http://ift.tt/2gGnwQ3

The impact of medical tourism on colorectal screening among Korean Americans: A community-based cross-sectional study

Abstract

Background

Colorectal cancer (CRC) remains the most commonly diagnosed cancer among Korean Americans (KAs) in part due to low screening rates. Recent studies suggest that some KA patients engage in medical tourism and receive medical care in their home country. The impact of medical tourism on CRC screening is unknown. The purpose of this paper was to 1) investigate the frequency of medical tourism, 2) examine the association between medical tourism and CRC screening, and 3) characterize KA patients who engage in medical tourism.

Methods

This is a community-based, cross-sectional study involving self-administered questionnaires conducted from August 2013 to October 2013. Data was collected on 193 KA patients, ages 50–75, residing in the Seattle metropolitan area. The outcome variable is up-to-date with CRC screening, defined as having had a stool test (Fecal Occult Blood Test or Fecal Immunochemical Test) within the past year or a colonoscopy within 10 years. Predictor variables are socio-demographics, health factors, acculturation, knowledge, financial concerns for medical care costs, and medical tourism.

Results

In multi-variate modeling, medical tourism was significantly related to being up-to-date with CRC screening. Participants who engaged in medical tourism had 8.91 (95% CI: 3.89–23.89) greater odds of being up-to-date with CRC screening compared to those who did not travel for healthcare. Factors associated with engaging in medical tourism were lack of insurance coverage (P = 0.008), higher levels of education (P = 0.003), not having a usual place of care (P = 0.002), older age at immigration (P = 0.009), shorter years-of-stay in the US (P = 0.003), and being less likely to speak English well (P = 0.03).

Conclusions

This study identifies the impact of medical tourism on CRC screening and characteristics of KA patients who report engaging in medical tourism. Healthcare providers in the US should be aware of the customary nature of medical tourism among KAs and consider assessing medical tests done abroad when providing cancer care.

Trial registration

Not applicable.



http://ift.tt/2gGdcb2

A case of extragastrointestinal stromal tumor complicated by severe hypoglycemia: a unique presentation of a rare tumor

Abstract

Background

Non-Islet Cell Tumor Hypoglycemia (NICTH) is a rare paraneoplastic cause of hypoglycemia arising from excess tumor production of insulin-like growth factor. The objective of this report is to describe an unusual case of Extragastrointestinal Stromal Tumor (EGIST) associated NICTH.

Case presentation

A 64 year-old African female was brought to the emergency room with a 1-month history of recurrent syncope, weight loss, and abdominal bloating. Serum blood glucose was discovered to 39 mg/dL, when insulin, proinsulin, and C-peptide were suppressed. Computed tomography scan revealed a diffuse extraintestinal metastatic disease process, and a biopsy confirmed the diagnosis of an Extragastrointestinal Stromal Tumor (EGIST). IGF-I and II levels were 27 ng/ml and 262 ng/ml respectively, and the ratio of IGF-II to IGF-I was calculated as 9.7:1, suggestive of IGF-II-mediated NICTH. Acutely, the patient's hypoglycemia resolved with dextrose and glucagon infusion. Long-term euglycemia was achieved with prednisone and imatinib therapy.

Conclusions

NICTH should be considered when hypoglycemia occurs in the setting of low serum insulin levels. Whereas definitive treatment of EGIST involves surgical resection, immunotherapy with tyrosine kinase inhibitors and corticosteroids have been shown to alleviate hypoglycemia in cases where surgery is delayed or not feasible.



http://ift.tt/2fYyORm

Role of geriatric intervention in the treatment of older patients with cancer: rationale and design of a phase III multicenter trial

Abstract

Background

In the general geriatric population, programs linking geriatric evaluation with interventions are effective for improving functional status and survival of the patients. Whether or not these interventions improve health related quality of life (HRQoL) or overall survival (OS) in older patients with cancer is not yet clear. Indeed, randomized data on the effect of such interventions on survival and HRQoL are rare and conflicting. We describe the rationale and design of a phase III multicenter trial aimed at assessing the efficacy of geriatric intervention in the management of elderly patients with cancer.

Methods/design

Approximately 1200 patients, 70 years and older, considered in need of a geriatric intervention based on the G8 screening tool will be randomized into two intervention arms. The 'Usual-care' arm involves standard oncological care based on pre-defined oncological protocols. In addition to the standard oncological care, the 'Case-management' arm involves a multidimensional geriatric assessment and interventions tailored for the patient. Efficacy will be assessed using a co-primary endpoint encompassing OS and HRQoL.

Discussion

This trial has been designed to assess whether focused geriatric case management can either improve OS or HRQoL in elderly cancer patients considered in need of geriatric assessment.

Trial registration

Clinicaltrials.gov ID: NCT02704832.



http://ift.tt/2gGft5K

Erratum to: Insulin-like growth factor 1 receptor mediated tyrosine 845 phosphorylation of epidermal growth factor receptor in the presence of monoclonal antibody cetuximab



http://ift.tt/2gGbYMX

Computational prediction of multidisciplinary team decision-making for adjuvant breast cancer drug therapies: a machine learning approach

Abstract

Background

Multidisciplinary team (MDT) meetings are used to optimise expert decision-making about treatment options, but such expertise is not digitally transferable between centres. To help standardise medical decision-making, we developed a machine learning model designed to predict MDT decisions about adjuvant breast cancer treatments.

Methods

We analysed MDT decisions regarding adjuvant systemic therapy for 1065 breast cancer cases over eight years. Machine learning classifiers with and without bootstrap aggregation were correlated with MDT decisions (recommended, not recommended, or discussable) regarding adjuvant cytotoxic, endocrine and biologic/targeted therapies, then tested for predictability using stratified ten-fold cross-validations. The predictions so derived were duly compared with those based on published (ESMO and NCCN) cancer guidelines.

Results

Machine learning more accurately predicted adjuvant chemotherapy MDT decisions than did simple application of guidelines. No differences were found between MDT- vs. ESMO/NCCN- based decisions to prescribe either adjuvant endocrine (97%, p = 0.44/0.74) or biologic/targeted therapies (98%, p = 0.82/0.59). In contrast, significant discrepancies were evident between MDT- and guideline-based decisions to prescribe chemotherapy (87%, p < 0.01, representing 43% and 53% variations from ESMO/NCCN guidelines, respectively). Using ten-fold cross-validation, the best classifiers achieved areas under the receiver operating characteristic curve (AUC) of 0.940 for chemotherapy (95% C.I., 0.922—0.958), 0.899 for the endocrine therapy (95% C.I., 0.880—0.918), and 0.977 for trastuzumab therapy (95% C.I., 0.955—0.999) respectively. Overall, bootstrap aggregated classifiers performed better among all evaluated machine learning models.

Conclusions

A machine learning approach based on clinicopathologic characteristics can predict MDT decisions about adjuvant breast cancer drug therapies. The discrepancy between MDT- and guideline-based decisions regarding adjuvant chemotherapy implies that certain non-clincopathologic criteria, such as patient preference and resource availability, are factored into clinical decision-making by local experts but not captured by guidelines.



http://ift.tt/2fYIueX

The impact of medical tourism on colorectal screening among Korean Americans: A community-based cross-sectional study

Abstract

Background

Colorectal cancer (CRC) remains the most commonly diagnosed cancer among Korean Americans (KAs) in part due to low screening rates. Recent studies suggest that some KA patients engage in medical tourism and receive medical care in their home country. The impact of medical tourism on CRC screening is unknown. The purpose of this paper was to 1) investigate the frequency of medical tourism, 2) examine the association between medical tourism and CRC screening, and 3) characterize KA patients who engage in medical tourism.

Methods

This is a community-based, cross-sectional study involving self-administered questionnaires conducted from August 2013 to October 2013. Data was collected on 193 KA patients, ages 50–75, residing in the Seattle metropolitan area. The outcome variable is up-to-date with CRC screening, defined as having had a stool test (Fecal Occult Blood Test or Fecal Immunochemical Test) within the past year or a colonoscopy within 10 years. Predictor variables are socio-demographics, health factors, acculturation, knowledge, financial concerns for medical care costs, and medical tourism.

Results

In multi-variate modeling, medical tourism was significantly related to being up-to-date with CRC screening. Participants who engaged in medical tourism had 8.91 (95% CI: 3.89–23.89) greater odds of being up-to-date with CRC screening compared to those who did not travel for healthcare. Factors associated with engaging in medical tourism were lack of insurance coverage (P = 0.008), higher levels of education (P = 0.003), not having a usual place of care (P = 0.002), older age at immigration (P = 0.009), shorter years-of-stay in the US (P = 0.003), and being less likely to speak English well (P = 0.03).

Conclusions

This study identifies the impact of medical tourism on CRC screening and characteristics of KA patients who report engaging in medical tourism. Healthcare providers in the US should be aware of the customary nature of medical tourism among KAs and consider assessing medical tests done abroad when providing cancer care.

Trial registration

Not applicable.



from Cancer via ola Kala on Inoreader http://ift.tt/2gGdcb2
via IFTTT

A case of extragastrointestinal stromal tumor complicated by severe hypoglycemia: a unique presentation of a rare tumor

Abstract

Background

Non-Islet Cell Tumor Hypoglycemia (NICTH) is a rare paraneoplastic cause of hypoglycemia arising from excess tumor production of insulin-like growth factor. The objective of this report is to describe an unusual case of Extragastrointestinal Stromal Tumor (EGIST) associated NICTH.

Case presentation

A 64 year-old African female was brought to the emergency room with a 1-month history of recurrent syncope, weight loss, and abdominal bloating. Serum blood glucose was discovered to 39 mg/dL, when insulin, proinsulin, and C-peptide were suppressed. Computed tomography scan revealed a diffuse extraintestinal metastatic disease process, and a biopsy confirmed the diagnosis of an Extragastrointestinal Stromal Tumor (EGIST). IGF-I and II levels were 27 ng/ml and 262 ng/ml respectively, and the ratio of IGF-II to IGF-I was calculated as 9.7:1, suggestive of IGF-II-mediated NICTH. Acutely, the patient's hypoglycemia resolved with dextrose and glucagon infusion. Long-term euglycemia was achieved with prednisone and imatinib therapy.

Conclusions

NICTH should be considered when hypoglycemia occurs in the setting of low serum insulin levels. Whereas definitive treatment of EGIST involves surgical resection, immunotherapy with tyrosine kinase inhibitors and corticosteroids have been shown to alleviate hypoglycemia in cases where surgery is delayed or not feasible.



from Cancer via ola Kala on Inoreader http://ift.tt/2fYyORm
via IFTTT

Role of geriatric intervention in the treatment of older patients with cancer: rationale and design of a phase III multicenter trial

Abstract

Background

In the general geriatric population, programs linking geriatric evaluation with interventions are effective for improving functional status and survival of the patients. Whether or not these interventions improve health related quality of life (HRQoL) or overall survival (OS) in older patients with cancer is not yet clear. Indeed, randomized data on the effect of such interventions on survival and HRQoL are rare and conflicting. We describe the rationale and design of a phase III multicenter trial aimed at assessing the efficacy of geriatric intervention in the management of elderly patients with cancer.

Methods/design

Approximately 1200 patients, 70 years and older, considered in need of a geriatric intervention based on the G8 screening tool will be randomized into two intervention arms. The 'Usual-care' arm involves standard oncological care based on pre-defined oncological protocols. In addition to the standard oncological care, the 'Case-management' arm involves a multidimensional geriatric assessment and interventions tailored for the patient. Efficacy will be assessed using a co-primary endpoint encompassing OS and HRQoL.

Discussion

This trial has been designed to assess whether focused geriatric case management can either improve OS or HRQoL in elderly cancer patients considered in need of geriatric assessment.

Trial registration

Clinicaltrials.gov ID: NCT02704832.



from Cancer via ola Kala on Inoreader http://ift.tt/2gGft5K
via IFTTT

Erratum to: Insulin-like growth factor 1 receptor mediated tyrosine 845 phosphorylation of epidermal growth factor receptor in the presence of monoclonal antibody cetuximab



from Cancer via ola Kala on Inoreader http://ift.tt/2gGbYMX
via IFTTT

Computational prediction of multidisciplinary team decision-making for adjuvant breast cancer drug therapies: a machine learning approach

Abstract

Background

Multidisciplinary team (MDT) meetings are used to optimise expert decision-making about treatment options, but such expertise is not digitally transferable between centres. To help standardise medical decision-making, we developed a machine learning model designed to predict MDT decisions about adjuvant breast cancer treatments.

Methods

We analysed MDT decisions regarding adjuvant systemic therapy for 1065 breast cancer cases over eight years. Machine learning classifiers with and without bootstrap aggregation were correlated with MDT decisions (recommended, not recommended, or discussable) regarding adjuvant cytotoxic, endocrine and biologic/targeted therapies, then tested for predictability using stratified ten-fold cross-validations. The predictions so derived were duly compared with those based on published (ESMO and NCCN) cancer guidelines.

Results

Machine learning more accurately predicted adjuvant chemotherapy MDT decisions than did simple application of guidelines. No differences were found between MDT- vs. ESMO/NCCN- based decisions to prescribe either adjuvant endocrine (97%, p = 0.44/0.74) or biologic/targeted therapies (98%, p = 0.82/0.59). In contrast, significant discrepancies were evident between MDT- and guideline-based decisions to prescribe chemotherapy (87%, p < 0.01, representing 43% and 53% variations from ESMO/NCCN guidelines, respectively). Using ten-fold cross-validation, the best classifiers achieved areas under the receiver operating characteristic curve (AUC) of 0.940 for chemotherapy (95% C.I., 0.922—0.958), 0.899 for the endocrine therapy (95% C.I., 0.880—0.918), and 0.977 for trastuzumab therapy (95% C.I., 0.955—0.999) respectively. Overall, bootstrap aggregated classifiers performed better among all evaluated machine learning models.

Conclusions

A machine learning approach based on clinicopathologic characteristics can predict MDT decisions about adjuvant breast cancer drug therapies. The discrepancy between MDT- and guideline-based decisions regarding adjuvant chemotherapy implies that certain non-clincopathologic criteria, such as patient preference and resource availability, are factored into clinical decision-making by local experts but not captured by guidelines.



from Cancer via ola Kala on Inoreader http://ift.tt/2fYIueX
via IFTTT

IL-17A produced by peritoneal macrophages promote the accumulation and function of granulocytic myeloid-derived suppressor cells in the development of colitis-associated cancer

Abstract

It is widely acknowledged that a close relationship is between inflammation and colon cancer. Interleukin (IL)-17A and myeloid-derived suppressor cells (MDSCs) play an important role in the development of colitis-associated cancer (CAC). However, the precise changes of IL-17, MDSCs, and Th17 cells during the CAC progression have not been observed in the colorectal chronic inflammation-dependent tumor. In this study, we found the level of IL-17 was increased in pathogenic colon site during the early stage of CAC model. Further experiments showed the increased IL-17 was probably secreted by peritoneal macrophages when exposed to dextran sulfate sodium (DSS). In vitro, we found that IL-17 could enhance survival and suppressive function of granulocytic (G)-MDSCs, the subset associated with inflammation. With the development of CAC, the proportions of MDSCs and Th17 cells were continuously increased by the high level of IL-17 produced by macrophages. However, the increase of MDSCs was earlier and acuter than that of Th17 cells. Selective depletion of MDSCs not only slowed down CAC process but also significantly reduce Th17 cells in vivo. Thereafter, we demonstrated that in the development of CAC, IL-17 secreted by peritoneal macrophages could promote the accumulation of G-MDSCs, then the proportion of Th17 cells was increased, and finally promote the development of CAC.



from Cancer via ola Kala on Inoreader http://ift.tt/2fXTokS
via IFTTT

Palliative Care and Palliative Radiotherapy Education in Radiation Oncology: A Survey of US Radiation Oncology Program Directors

Publication date: Available online 1 December 2016
Source:Practical Radiation Oncology
Author(s): Randy L. Wei, Lauren E. Colbert, Joshua Jones, Margarita Racsa, Gabrielle Kane, Steve Lutz, Neha Vapiwala, Kavita Dharmarajan
Purpose/ObjectiveTo assess the state of palliative and supportive care (PSC) and palliative radiotherapy educational curricula in radiation oncology residency programs in the United States.Materials and methodsWe surveyed 87 program directors of radiation oncology residency programs in the United States from September 2015 to November 2015. An electronic survey on PSC and palliative radiotherapy education during residency was sent to all program directors. The survey consisted of questions on (1) perceived relevance of PSC and palliative radiotherapy to radiation oncology training, (2) formal didactic sessions on domains of PSC and palliative radiotherapy, (3) effective teaching formats for PSC and palliative radiotherapy education, (4) and perceived barriers for integrating PSC and palliative radiotherapy into the residency curriculum.ResultsA total of 57 responses (63%) were received. Most program directors agreed or strongly agreed that PSC (93%) and palliative radiotherapy (99%) are important competency for radiation oncology residents and fellows. However, 67% of residency programs had formal educational activities in principles and practice of PSC. Most programs had one or more hours of formal didactics on management of pain (67%), management of neuropathic pain (65%), and management of nausea and vomiting (63%). However, only 35%, 33%, and 30% had dedicated lectures on initial management of fatigue, assessing role of spirituality, and discussing advance care directives, respectively. Lastly, 85% of programs reported having a formal curriculum on palliative radiotherapy. Programs were most likely to have education on palliative radiation to brain, bone, and spine, but less likely on visceral, or skin metastasis.ConclusionResidency program directors believe that PSC and palliative radiotherapy are important competencies for their trainees and support increasing education in these two educational domains. Many residency programs have structured curricula on PSC and palliative radiation education, but room for improvement exists in management of fatigue, assessing role of spirituality and discussion regarding advance care planning.



from Cancer via ola Kala on Inoreader http://ift.tt/2fYur8Q
via IFTTT

A Survey of Residents' Experience with Patient Safety and Quality Improvement Concepts in Radiation Oncology

Publication date: Available online 1 December 2016
Source:Practical Radiation Oncology
Author(s): Matthew B. Spraker, Matthew Nyflot, Kristi Hendrickson, Eric Ford, Gabrielle Kane, Jing Zeng




from Cancer via ola Kala on Inoreader http://ift.tt/2gG3Snp
via IFTTT

Use of indocyanine green and the HyperEye system for detecting sentinel lymph nodes in breast cancer within a population of European patients: a pilot study

Abstract

Background

Certain studies suggest that using indocyanine green (ICG) could be comparable with using radioisotopes (RI) in detecting sentinel lymph nodes (SLNs) in breast cancer. A number of these studies were performed in Asia. The objective of our pilot study was to evaluate within a European population of breast cancer patients the detection rate of SLNs using ICG and the HyperEye system and the concordance in SLNs detected using this method and the standard method involving RI and a gamma probe.

Methods

Ten female patients with early-stage breast cancer (Czech Republic) indicated for partial mastectomy and SLN biopsy were subjected to standard application of RI. Before surgery, ICG was administered periareolarly in the amount of 1 ml of 0.5% solution. Sentinel lymph nodes were first detected perioperatively exclusively using ICG fluorescence and the HyperEye device (Mizuho, Japan). Only after removal of all SLNs found in this way was the standard hand-held gamma probe used to detect RI, and any potential additional SLNs not found with ICG were then extirpated.

Results

In all 10 cases, at least one SLN was successfully detected using ICG. Nevertheless, in five patients, 1–4 additional SLNs were found using the gamma probe. Complete concordance in detecting SLNs therefore occurred in only one half of the cases. Metastases in SLNs were found in a total of two cases. Had we used only ICG for detection, one of these two cases would have been incorrectly evaluated as N0 (ICG false negativity).

Conclusions

The study did not confirm the hypothesis that the use of ICG with the HyperEye system can currently be considered a method fully comparable with using RI and a gamma probe in a population of European patients. Although the detection rate is high, a significantly lower number of SLNs were detected using ICG than using RI (p = 0.03). Thus, there would be a higher probability for false negatives to occur in using SLN biopsy. This is caused mainly by the limited permeability of tissues to fluorescent radiation and the difficulty therefore of detecting nodes located deeper beneath the body's surface.



from Cancer via ola Kala on Inoreader http://ift.tt/2fRJaiE
via IFTTT