IL-17-producing Th17 cells, generated through a STAT3-dependent mechanism, have been shown to promote carcinogenesis in many systems, including microbe-driven colon cancer. Additional sources of IL-17, such as γδ T cells, become available under inflammatory conditions, but their contributions to cancer development are unclear. In this study, we modeled Th17-driven colon tumorigenesis by colonizing MinApc+/- mice with the human gut bacterium, enterotoxigenic Bacteroides fragilis (ETBF), to investigate the link between inflammation and colorectal cancer. We found that ablating Th17 cells by knocking out Stat3 in CD4+ T cells delayed tumorigenesis, but failed to suppress the eventual formation of colonic tumors. However, IL-17 blockade significantly attenuated tumor formation, indicating a critical requirement for IL-17 in tumorigenesis, but from a source other than Th17 cells. Notably, genetic ablation of γδ T cells in ETBF-colonized Th17-deficient Min mice prevented the late emergence of colonic tumors. Taken together, these findings support a redundant role for adaptive Th17 cell- and innate γδT17 cell-derived IL-17 in bacteria-induced colon carcinogenesis, stressing the importance of therapeutically targeting the cytokine itself rather than its cellular sources.
from Cancer via ola Kala on Inoreader http://ift.tt/1WoyWpm
via IFTTT
Δευτέρα 15 Φεβρουαρίου 2016
Redundant innate and adaptive sources of IL-17 production drive colon tumorigenesis
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου