A global understanding of miRNA function in EGFR signaling pathways may provide insights into improving the management of KRAS-mutant lung cancers, which remain relatively recalcitrant to treatment. To identify miRNAs implicated in EGFR signaling, we transduced bronchial epithelial BEAS-2B cells with retroviral vectors expressing KRASG12V and monitored miRNA expression patterns by microarray analysis. Through this approach, we defined miR-29b as an important target for upregulation by mutant KRAS in non–small cell lung cancers. Cell biologic analyses showed that pharmacologic inhibition of EGFR or MEK was sufficient to reduce levels of miR-29b, while PI3K inhibition had no effect. In KRASG12V-transduced BEAS-2B cells, introduction of anti-miR-29b constructs increased the sensitivity to apoptosis, arguing that miR-29b mediated apoptotic resistance conferred by mutant KRAS. Mechanistic investigations traced this effect to the ability of miR-29b to target TNFAIP3/A20, a negative regulator of NF-κB signaling. Accordingly, overexpression of an miR-29b–refractory isoform of TNFAIP3 restored NF-κB and extrinsic apoptosis, confirming that TNFAIP3 is a functionally relevant target of miR-29b. We also noted that miR-29b could confer sensitivity to intrinsic apoptosis triggered by exposure to cisplatin, a drug used widely in lung cancer treatment. Thus, miR-29b expression may tilt cells from extrinsic to intrinsic mechanisms of apoptosis. Overall, our results reveal a complexity in cancer for miR-29b, which can act as either an oncogene or tumor suppressor gene depending on signaling context. Cancer Res; 76(14); 4160–9. ©2016 AACR.
from Cancer via ola Kala on Inoreader http://ift.tt/2a51vJ9
via IFTTT
Δευτέρα 18 Ιουλίου 2016
miR-29b Mediates KRAS Signaling in NSCLC
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου