Glioma stem-like cells (GSC) with tumor initiating activity orchestrate the cellular hierarchy in glioblastoma (GBM) and engender therapeutic resistance. Recent work has divided GSC into two subtypes with a mesenchymal (MES) GSC population as the more malignant subtype. In this study, we identify the FOXD1-ALDH1A3 signaling axis as a determinant of the MES GSC phenotype. The transcription factor FOXD1 is expressed predominantly in patient-derived cultures enriched with MES, but not with the proneural (PN) GSC subtype. shRNA-mediated attenuation of FOXD1 in MES GSC ablates their clonogenicity in vitro and in vivo. Mechanistically, FOXD1 regulates the transcriptional activity of ALDH1A3, an established functional marker for MES GSC. Indeed, the functional roles of FOXD1 and ALDH1A3 are likely evolutionally conserved, insofar as RNAi-mediated attenuation of their orthologous genes in Drosophila blocks formation of brain tumors engineered in that species. In clinical specimens of high-grade glioma, the levels of expression of both FOXD1 and ALDH1A3 are inversely correlated with patient prognosis. Lastly, a novel small molecule inhibitor of ALDH we developed, termed GA11, displays potent in vivo efficacy when administered systemically in a murine GSC-derived xenograft model of GBM. Collectively, our findings define a FOXD1-ALDH1A3 pathway in controlling the clonogenic and tumorigenic potential of MES GSC in GBM tumors.
from Cancer via ola Kala on Inoreader http://ift.tt/2bPUexO
via IFTTT
Κυριακή 28 Αυγούστου 2016
FOXD1-ALDH1A3 Axis in Mesenchymal Glioma Stem-like Cells
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου