Abstract
Background
The currently approved therapies fail in a substantial number of colorectal cancer (CRC) patients due to the molecular heterogeneity of CRC, hence new efficient drug combinations are urgently needed. Emerging data indicate that 5-azanucleosides are able to sensitize cancer cells to the standard chemotherapeutic agents and contribute to overcoming intrinsic or acquired chemoresistance.
Methods
CRC cells with different genetic backgrounds (HCT116, DLD-1, HT-29) were sequentially treated with 5-azanucleosides and topoisomerase inhibitors. The combined effects of these two drug classes on cell viability, apoptosis, signaling pathways, and colony formation were investigated.
Results
Here, we demonstrate that pretreatment with DNA demethylating agents, 5-aza-2′-deoxycytidine and 5-azacytidine, sensitizes CRC cells to topoisomerase inhibitors (irinotecan, etoposide, doxorubicin, mitoxantrone), reducing cell viability and clonogenicity and increasing programmed cell death more effectively than individual compounds at the same or even higher concentrations. 5-Azanucleosides did not cause considerable immediate toxic effects as evaluated by analysis of cell viability, apoptosis, DNA damage (γH2A.X), and endoplasmic reticulum (ER) stress (CHOP). However, 5-azanucleosides exerted long-lasting effects, reducing cell viability, changing cell morphology, and affecting phosphoinositide 3-kinase (PI3-kinase)/Akt signaling pathway. We found that a single exposure to 5-azanucleosides is sufficient to induce long-lasting sensitization to topoisomerase inhibitors. The combinatorial, but not separate, treatment with low doses of 5-aza-2′-deoxycytidine (0.1 μM) and etoposide (0.5 μM) caused a long-lasting (almost 70 days) reduction in clonogenic/replating ability of DLD-1 cells.
Conclusions
These results suggest that sequential treatments with DNA demethylating agents and topoisomerase inhibitors may exert clinically relevant anticancer effects.
http://ift.tt/2gmdXcX
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου