Abstract
Background
Accurate quantification in molecular imaging is essential to improve the assessment of novel drugs and compare the radiobiological effects of therapeutic agents prior to in-human studies. The aim of this study was to investigate the challenges and feasibility of pre-clinical quantitative imaging and mouse-specific dosimetry of 111In-labelled radiotracers.
Attenuation, scatter and partial volume effects were studied using phantom experiments, and an activity calibration curve was obtained for varying sphere sizes. Six SK-OV-3-tumour bearing mice were injected with 111In-labelled HER2-targeting monoclonal antibodies (mAbs) (range 5.58–8.52 MBq). Sequential SPECT imaging up to 197 h post-injection was performed using the Albira SPECT/PET/CT pre-clinical scanner. Mice were culled for quantitative analysis of biodistribution studies. The tumour activity, mass and percentage of injected activity per gram of tissue (%IA/g) were calculated at the final scan time point and compared to the values determined from the biodistribution data. Delivered 111In-labelled mAbs tumour absorbed doses were calculated using mouse-specific convolution dosimetry, and absorbed doses for 90Y-labelled mAbs were extrapolated under the assumptions of equivalent injected activities, biological half-lives and uptake distributions as for 111In.
Results
For the sphere sizes investigated (volume 0.03–1.17 ml), the calibration factor varied by a factor of 3.7, whilst for the range of tumour masses in the mice (41–232 mg), the calibration factor changed by a factor of 2.5. Comparisons between the mice imaging and the biodistribution results showed a statistically significant correlation for the tumour activity (r = 0.999, P < 0.0001) and the tumour mass calculations (r = 0.977, P = 0.0008), whilst no correlation was found for the %IA/g (r = 0.521, P = 0.29). Median tumour-absorbed doses per injected activity of 52 cGy/MBq (range 36–69 cGy/MBq) and 649 cGy/MBq (range 441–950 cGy/MBq) were delivered by 111In-labelled mAbs and extrapolated for 90Y-labelled mAbs, respectively.
Conclusions
This study demonstrates the need for multidisciplinary efforts to standardise imaging and dosimetry protocols in pre-clinical imaging. Accurate image quantification can improve the calculation of the activity, %IA/g and absorbed dose. Diagnostic imaging could be used to estimate the injected activities required for therapeutic studies, potentially reducing the number of animals used.
http://ift.tt/2fhM9pd
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου