Τετάρτη 6 Δεκεμβρίου 2017

Treatment of melanoma with selected inhibitors of signaling kinases effectively reduces proliferation and induces expression of cell cycle inhibitors

Abstract

Cancer treatment often tends to involve direct targeting enzymes essential for the growth and proliferation of cancer cells. The aim of this study was the recognition of the possible role of selected protein kinases: PI3K, ERK1/2, and mTOR in cell proliferation and cell cycle in malignant melanoma. We investigated the role of protein kinase inhibitors: U0126 (ERK1/2), LY294002 (PI3K), rapamycin (mTOR), everolimus (mTOR), GDC-0879 (B-RAF), and CHIR-99021 (GSK3beta) in cell proliferation and expression of crucial regulatory cell cycle proteins in human melanoma cells: WM793 (VGP) and Lu1205 (metastatic). They were used either individually or in various combinations. The study on the effect of signaling kinases inhibitors on proliferation—BrdU ELISA test after 48–72 h. Their effect on the expression of cell cycle regulatory proteins: cyclin D1 and D3, cyclin-dependent kinase CDK4 and CDK6, and cell cycle inhibitors: p16, p21, and p27, was studied at the protein level (western blot). Treatment of melanoma cells with protein kinase inhibitors led to significantly decreased cell proliferation except the use of a GSK-3β kinase inhibitors—CHIR-99021. The significant decrease in the expression of selected cyclins and cyclin-dependent kinases (CDKs) with parallel increase in the expression of some of cyclin-dependent kinases inhibitors and in consequence meaningful reduction in melanoma cell proliferation by the combinations of inhibitors of signaling kinases clearly showed the crucial role of AKT, ERK 1/2, and mTOR signal transduction in melanoma progression. The results unanimously indicate those pathways as an important target for treatment of melanoma.



http://ift.tt/2BD5Sqa

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου