Abstract
Background
Inhibition of ChK1 appears as a promising strategy for selectively potentiate the efficacy of chemotherapeutic agents in G1 checkpoint-defective tumor cells such as those that lack functional p53 protein. The p53 pathway is commonly dysregulated in soft-tissue sarcomas (STS) through mutations affecting TP53 or MDM2 amplification. GDC-0575 is a selective ATP-competitive inhibitor of CHK1. Methods
We have performed a systematic screening of a panel of 10 STS cell lines by combining the treatment of GDC-0575 with chemotherapy. Cell proliferation, cell death and cell cycle analysis were evaluated with high throughput assay. In vivo experiments were performed by using TP53-mutated and TP53 wild-type patient-derived xenograft models of STS. Clinical activity of GDC-0575 combined with chemotherapy in patients with TP53-mutated and TP53 wild-type STS was also assessed. Results
We found that GDC-0575 abrogated DNA damage-induced S and G2–M checkpoints, exacerbated DNA double-strand breaks and induced apoptosis in STS cells. Moreover, we observed a synergistic or additive effect of GDC-0575 together with gemcitabine in vitro and in vivo in TP53-proficient but not TP53-deficient sarcoma models. In a phase 1 study of GDC-0575 in combination with gemcitabine, two patients with metastatic TP53-mutated STS had an exceptional, long-lasting response despite administration of a very low dose of gemcitabine whereas one patient with wild-type TP53 STS had no clinical benefit. Genetic profiling of samples from a patient displaying secondary resistance after 1 year showed loss of one preexisting loss-of-function mutation in the helical domain of DNA2. Conclusion
We provide the first pre-clinical and clinical evidence that potentiation of chemotherapy activity with a CHK1 inhibitor is a promising strategy in TP53-deficient STS and deserves further investigation in the phase 2 setting.http://ift.tt/2GM48yl
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου