Abstract
Purpose
It is now recognized that solid tumors encroach on the host's immune microenvironment to favor its own proliferation. Strategies to enhance the specificity of the endogenous T-cell population against tumors have been met with limited clinical success. We aimed to devise a two-tier protocol coupling in vivo whole antigen priming with ex vivo cellular expansion to clinically evaluate survival in patients following re-infusion of primed, autologous T cells, thereby determining treatment efficacy.
Experimental design
Treatment commenced with the acquisition of whole tumor antigens from tumor cell lines corresponding with patients' primary malignancy. Lysate mixture was inoculated intradermally, while peripheral blood mononuclear cells (PBMCs) were periodically extracted via phlebotomy and expanded in culture ex vivo for re-infusion. Post-treatment tumor-specific T-cell response and cytotoxicity was confirmed via Elispot and real-time cell analyzing (RTCA) assay. Serum cytokine levels and cytotoxicity scores were evaluated for associations with survival status and duration.
Results
There was a significant increase in cytotoxicity exhibited by T cells measured using both Elispot and RTCA following treatment. Correlation analysis determined significant association between higher post-treatment cytotoxicity scores and survival status (R = 0.52, p = 0.0028) as well as longer survival duration in months (R = 0.59, p = 0.005).
Conclusions
Our treatment protocol successfully demonstrated significant correlation between tumor-associated antigen-specific immune response and objective prolongation of survival. Whole-cell cancer antigen priming and adoptive T-cell therapy is, therefore, a highly feasible clinical model which can be easily replicated to positively influence outcome in end-stage malignancy.
http://ift.tt/2Flq81L
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου