Τετάρτη 7 Μαρτίου 2018

The transcriptional co-activator TAZ is a potent mediator of alveolar rhabdomyosarcoma tumorigenesis

Purpose: Alveolar rhabdomyosarcoma (aRMS) is a childhood soft tissue sarcoma driven by the signature PAX3-FOXO1 (P3F) fusion gene. 5-year survival for aRMS is <50%, with no improvement in over four decades. Although the transcriptional co-activator TAZ is oncogenic in carcinomas, the role of TAZ in sarcomas is poorly understood. The aim of this study was to investigate the role of TAZ in P3F-aRMS tumorigenesis. Experimental Design: After determining from public datasets that TAZ is upregulated in human aRMS transcriptomes, we evaluated whether TAZ is also upregulated in our myoblast-based model of P3F-initiated tumorigenesis, and performed IHC staining of 63 human aRMS samples from tissue microarrays. Using constitutive and inducible RNAi, we examined the impact of TAZ loss-of-function on aRMS oncogenic phenotypes in vitro and tumorigenesis in vivo. Last, we performed pharmacological studies in aRMS cell lines using porphyrin compounds, which interfere with TAZ-TEAD transcriptional activity. Results: TAZ is upregulated in our P3F-initiated aRMS model, and aRMS cells and tumors have high nuclear TAZ expression. In vitro, TAZ suppression inhibits aRMS cell proliferation, induces apoptosis, supports myogenic differentiation, and reduces aRMS cell stemness. TAZ-deficient aRMS cells are enriched in G2/M. In vivo, TAZ suppression attenuates aRMS xenograft tumor growth. Preclinical studies show decreased aRMS xenograft tumor growth with porphyrin compounds alone and in combination with vincristine. Conclusions: TAZ is oncogenic in aRMS sarcomagenesis. While P3F is currently not therapeutically tractable, targeting TAZ could be a promising novel approach in aRMS.



http://ift.tt/2FpSFTM

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου