Immunotherapy in pancreatic ductal adenocarcinoma (PDA) remains a difficult clinical problem despite success in other disease types with immune checkpoint blockade (ICB) and chimeric antigen receptor T cell therapy. Mechanisms driving immunosuppression and poor T cell infiltration in PDA are incompletely understood. Here we use genetically engineered mouse models of PDA that recapitulate hallmarks of human disease to demonstrate that CD40 pathway activation is required for clinical response to radiotherapy (RT) and ICB with αCTLA-4 and αPD-1. The combination of an agonist αCD40 antibody, RT, and dual ICB eradicated irradiated and unirradiated (i.e. abscopal) tumors, generating long-term immunity. Response required T cells and also short-lived myeloid cells and was dependent on the long non-coding RNA myeloid regulator Morrbid. Using unbiased random forest machine learning, we built unique, contextual signatures for each therapeutic component, revealing that (i) RT triggers an early proinflammatory stimulus, ablating existing intratumoral T cells and upregulating MHC class I and CD86 on antigen presenting cells, (ii) αCD40 causes a systemic and intratumoral reorganization of the myeloid compartment, and (iii) ICB increases intratumoral T cell infiltration and improves the CD8 T cell:regulatory T cell ratio. Thus, αCD40 and RT non-redundantly augment anti-tumor immunity in PDA, which is otherwise refractory to ICB, providing a clear rationale for clinical evaluation.
https://ift.tt/2LGFL7u
Τρίτη 29 Μαΐου 2018
Radiotherapy and CD40 activation separately augment immunity to checkpoint blockade in cancer
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου