Τετάρτη 29 Νοεμβρίου 2017

Photodynamic priming mitigates chemotherapeutic selection pressures and improves drug delivery

Physiological barriers to drug delivery and selection for drug resistance limit survival outcomes in cancer patients. In this study, we present preclinical evidence that a subtumoricidal photodynamic priming (PDP) strategy can relieve drug delivery barriers in the tumor microenvironment to safely widen the therapeutic window of a nanoformulated cytotoxic drug. In orthotopic xenograft models of pancreatic cancer, combining PDP with nanoliposomal irinotecan (nal-IRI) prevented tumor relapse, reduce metastasis and increase both progression-free survival and 1-year disease-free survival. PDP enabled these durable improvements by targeting multiple tumor compartments to (1) increase intratumoral drug accumulation by >10-fold, (2) increase the duration of drug exposure above a critical therapeutic threshold, and (3) attenuate surges in CD44 and CXCR4 expression which mediate chemoresistance often observed after multi-cycle chemotherapy. Overall, our results offer preclinical proof of concept for the effectiveness of PDP to minimize risks of tumor relapse, progression and drug resistance and to extend patient survival.

http://ift.tt/2AmXePE

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου