Abstract
IFN-γ plays a crucial role in anti-tumor responses but also induces expression of PD-L1, a well-established inhibitor of anti-tumor immune function. Understanding how molecular signaling regulates the function of IFN-γ might improve its anti-tumor efficacy. Here we show that the tumor expression of IFN-γ expression alone has no significant prognostic value in patients with locally advanced lung adenocarcinoma. Surprisingly, patients with tumors expressing both IFN-γ and PD-L1 have the best prognosis compared to those with tumors expressing IFN-γ or PD-L1 alone. Transcriptome analysis demonstrated that tumor tissues expressing IFN-γ display gene expression associated with suppressed cell cycle progression and expansion. Unexpectedly this profile was observed in PD-L1+ but not PD-L1- tumors. The current concept is that PD-L1 functions as a shield protecting tumor cells from cytolytic T cell (CTL)-mediated anti-tumor progression. However, our data indicate that PD-L1 expression in the presence of IFN-γ might serve as biomarker for the sensitivity of tumors to the inhibitory effect of IFN-γ. Mechanistic analysis revealed that in lung adenocarcinoma cells IFN-γ induced activation of JAK2-STAT1 and PI3K-AKT pathways. The activation of JAK2-STAT1 is responsible for the anti-proliferative effect of IFN-γ. Inhibition of PI3K downregulated PD-L1 expression and enhanced the anti-proliferative effect of IFN-γ, suggesting that blockade of PI3K might maximize the IFN-γ-mediated anti-tumor effect. Our findings provide evidence for crosstalk between JAK2-STAT1 and PI3K-AKT pathways in response to IFN-γ in lung adenocarcinoma and have implications for the design of combinatorial targeted therapy and immunotherapy for the treatment of lung adenocarcinoma. This article is protected by copyright. All rights reserved.
http://ift.tt/2HiV1Ev
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου