HER2-targeted therapies, such as trastuzumab, have increased the survival rates of HER2+ breast cancer patients. However, despite these therapies, many tumors eventually develop resistance to these therapies. Our lab previously reported an unexpected sensitivity of HER2+ breast cancer cells to poly (ADP-ribose) polymerase inhibitors (PARPi), agents that target homologous recombination (HR)–deficient tumors, independent of a DNA repair deficiency. In this study, we investigated whether HER2+ trastuzumab-resistant (TR) breast cancer cells were susceptible to PARPi and the mechanism behind PARPi induced cytotoxicity. We demonstrate that the PARPi ABT-888 (veliparib) decreased cell survival in vitro and tumor growth in vivo of HER2+ TR breast cancer cells. PARP-1 siRNA confirmed that cytotoxicity was due, in part, to PARP-1 inhibition. Furthermore, PARP-1 silencing had variable effects on the expression of several NF-B–regulated genes. In particular, silencing PARP-1 inhibited NF-B activity and reduced p65 binding at the IL8 promoter, which resulted in a decrease in IL8 mRNA and protein expression. Our results provide insight in the potential mechanism by which PARPi induces cytotoxicity in HER2+ breast cancer cells and support the testing of PARPi in patients with HER2+ breast cancer resistant to trastuzumab. Mol Cancer Ther; 17(5); 921–30. ©2018 AACR.
from Cancer via ola Kala on Inoreader https://ift.tt/2I1dWYG
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου