Abstract
Purpose
To determine if inhibiting neuropilin-1 (NRP-1) affects the radiosensitivity of NSCLC cells through a vascular endothelial growth factor receptor 2 (VEGFR2)-independent pathway, and to assess the underlying mechanisms.
Methods
The expression of VEGFR2, NRP-1, related signaling molecules, abelson murine leukemia viral oncogene homolog 1 (ABL-1), and RAD51 were determined by RT-PCR and Western blotting, respectively. Radiosensitivity was assessed using the colony-forming assay, and the cell apoptosis were analyzed by flow cytometry.
Results
We selected two cell lines with high expression levels of VEGFR2, including Calu-1 cells that have high NRP-1 expression, and H358 cells that have low NRP-1 expression. Upon inhibition of p-VEGFR2 by apatinib in Calu-1 cells, the expression of NRP-1 protein and other related proteins in the pathway was still high. Upon NRP-1 siRNA treatment, the expression of both NRP-1 and RAD51 decreased (p < 0.01; p < 0.05). Upon ABL-1 siRNA treatment, the expression of NRP-1 was increased and the expression of RAD51 was unchanged. Calu-1 cells treated with NRP-1 siRNA exhibited significantly higher apoptosis and radiation sensitivity in radiation therapy compared to Calu-1 cells treated with apatinib alone (p < 0.01; p < 0.01). The apoptosis and radiation sensitivity in H358 cells with NRP-1 overexpression was similar to the control group regardless of VEGFR2 inhibition.
Conclusions
We demonstrated that when VEGFR2 was inhibited, NRP-1 appeared to regulate RAD51 expression through the VEGFR2-independent ABL-1 pathway, consequently regulating radiation sensitivity. In addition, the combined inhibition of VEGFR2 and NRP-1 appears to sensitize cancer cells to radiation.
https://ift.tt/2l6ZzVI
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου