Πέμπτη 31 Μαΐου 2018

Nucleoside Diphosphate Kinase-3 (NME3) Enhances TLR5-Induced NF{kappa}B Activation

Bacterial flagellin is a potent activator of NFB signaling, inflammation, and host innate immunity, and recent data indicate that flagellin represents a novel antitumor ligand acting through toll-like receptor 5 (TLR5) and the NFB pathway to induce host immunity and aid in the clearance of tumor xenografts. To identify innate signaling components of TLR5 responsible for these antitumor effects, a loss-of-function high-throughput screen was employed utilizing carcinoma cells expressing a dynamic NFB bioluminescent reporter stimulated by Salmonella typhimurium expressing flagellin. A live cell screen of a siRNA library targeting 691 known and predicted human kinases to identify novel tumor cell modulators of TLR5-induced NFB activation uncovered several interesting positive and negative candidate regulators not previously recognized, including nucleoside diphosphate kinase 3 (NME3), characterized as an enhancer of signaling responses to flagellin. Targeted knockdown and overexpression assays confirmed the regulatory contribution of NME3 to TLR5-mediated NFB signaling, mechanistically downstream of MyD88. Furthermore, Kaplan–Meier survival analysis showed that NME3 expression correlated highly with TLR5 expression in breast, lung, ovarian, and gastric cancers, and furthermore, high-level expression of NME3 increased overall survival for patients with breast, lung, and ovarian cancer, but the opposite in gastric cancer. Together, these data identify a previously unrecognized proinflammatory role for NME3 in signaling downstream of TLR5 that may potentiate cancer immunotherapies.

Implications: Proinflammatory signaling mediated by innate immunity engagement of flagellin-activated TLR5 in tumor cells results in antitumor effects through NME3 kinase, a positive downstream regulator of flagellin-mediated NFB signaling, enhancing survival for several human cancers. Mol Cancer Res; 16(6); 986–99. ©2018 AACR.



https://ift.tt/2xyQDBs

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου