Πέμπτη 5 Ιουλίου 2018

Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency

Publication date: Available online 14 June 2018

Source: Cell Stem Cell

Author(s): Kenjiro Adachi, Wolfgang Kopp, Guangming Wu, Sandra Heising, Boris Greber, Martin Stehling, Marcos J. Araúzo-Bravo, Stefan T. Boerno, Bernd Timmermann, Martin Vingron, Hans R. Schöler

Summary

Transcription factor (TF)-mediated reprogramming to pluripotency is a slow and inefficient process, because most pluripotency TFs fail to access relevant target sites in a refractory chromatin environment. It is still unclear how TFs actually orchestrate the opening of repressive chromatin during the long latency period of reprogramming. Here, we show that the orphan nuclear receptor Esrrb plays a pioneering role in recruiting the core pluripotency factors Oct4, Sox2, and Nanog to inactive enhancers in closed chromatin during the reprogramming of epiblast stem cells. Esrrb binds to silenced enhancers containing stable nucleosomes and hypermethylated DNA, which are inaccessible to the core factors. Esrrb binding is accompanied by local loss of DNA methylation, LIF-dependent engagement of p300, and nucleosome displacement, leading to the recruitment of core factors within approximately 2 days. These results suggest that TFs can drive rapid remodeling of the local chromatin structure, highlighting the remarkable plasticity of stable epigenetic information.

Graphical Abstract

Graphical abstract for this article



https://ift.tt/2KDwsZq

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου